
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00253-022-11859-5

MINI-REVIEW

Bioprospecting of microbial enzymes: current trends in industry 
and healthcare

Eswar Rao Tatta1 · Madangchanok Imchen1 · Jamseel Moopantakath1 · Ranjith Kumavath1 

Received: 15 February 2022 / Revised: 15 February 2022 / Accepted: 26 February 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract 
Microbial enzymes have an indispensable role in producing foods, pharmaceuticals, and other commercial goods. Many 
novel enzymes have been reported from all domains of life, such as plants, microbes, and animals. Nonetheless, industrially 
desirable enzymes of microbial origin are limited. This review article discusses the classifications, applications, sources, 
and challenges of most demanded industrial enzymes such as pectinases, cellulase, lipase, and protease. In addition, the 
production of novel enzymes through protein engineering technologies such as directed evolution, rational, and de novo 
design, for the improvement of existing industrial enzymes is also explored. We have also explored the role of metagenom-
ics, nanotechnology, OMICs, and machine learning approaches in the bioprospecting of novel enzymes. Overall, this review 
covers the basics of biocatalysts in industrial and healthcare applications and provides an overview of existing microbial 
enzyme optimization tools.

Key points  
• Microbial bioactive molecules are vital for therapeutic and industrial applications.
• High-throughput OMIC is the most proficient approach for novel enzyme discovery.
• Comprehensive databases and efficient machine learning models are the need of the hour to fast forward de novo enzyme 
   design and discovery.

Keywords Industrial enzymes · Microbial enzymes · Bio-prospection · Industrial biotechnology · Enzyme design

Introduction

Biocatalysts are enzymes having high specificity and activ-
ity against targeted substrate that promotes bioconversion 
rate (Robinson 2015; Jemli et al. 2016). Metabolic pathways 
in the living cell depend on multiple enzymes for break-
ing down macromolecules into simpler units that are easier 
to absorb by the cells (Jemli et al. 2016; Piergiorge et al. 
2017; Hughes and Lewis 2018). Such enzymes could be 
exploited to catalyze a vast array of commercial processes 
in the textile, dairy, and pharmaceutical industries (Morin 
et al. 2019). Applications of microbial enzymes date back 
thousands of years when the Sumerians fermented brew 

around 7000 years ago and utilized chymosin, a protease 
from ruminant animals. However, modern biocatalysis was 
first established by Louis Pasteur in 1876, followed by the 
postulation of the “lock and key” model by Emil Fisher in 
1894 that demonstrated the enzyme specificity. In 1897, 
Buchner proposed that the fermentation process be catalyzed 
with cell-free extracts; this paved the beginning of enzyme-
catalyzed fermentation processes (Grunwald 2017; Hughes 
and Lewis 2018). A schematic diagram of the historic mill-
stones in the application of biocatalysts is depicted in Fig. 1. 
The usage of industrial enzymes has been increasing rapidly 
due to improved performance and cost-effectiveness. The 
ever-increasing demand could be attributed to the stability in 
a range of substrate specificity, pH, temperature, and biodeg-
radability (Jemli et al. 2016; Grunwald 2017). By the begin-
ning of the twenty-first century, the enzyme industry had a 
remarkable growth and expansion that provided jobs, goods, 
services, and opportunities to improve the living standard for 
millions of people globally.
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Most of the industrial enzymes are of animal sources 
(chymosin, pepsin, trypsin, and pancreatin), plant sources 
(ficin, papain, and bromelain), and microbial sources (pec-
tinases, glucoamylase, α-amylase) (Tan et al. 2019; Daniell 
et al. 2019; Saad et al. 2020). However, in particular, micro-
bial enzymes have become an invaluable part of pharmaceu-
tical, food, detergent, leather, textile, paper, biofuels, food, 
beverage, and other consumer products (Morin et al. 2019). 
The importance of microbial enzymes has been credited 
to their higher stability and activity compared to plant and 
animal sources (Gurung et al. 2013). In addition, microbial 
enzymes can be produced in a larger quantity through fer-
mentation processes in minimum time. Hence, industries 
have focused on identifying novel strains to produce specific 
enzymes of desirable properties (Anbu et al. 2017). Further-
more, with the advancement of synthetic biology and tweak-
ing enzyme structure(s), microbial enzymes have provided 
a promising future with customized functions that have 
attracted researchers from academia and industries (Rao 
et al. 2017). In this review, we have explored the common 
industrial enzymes, their classifications, and applications. 
Furthermore, we also explored conventional approaches for 
enzyme bioprospection and design such as rational, de novo, 
and directed evolution, followed by the upcoming tools such 
as metagenomics, OMICs, nanotechnology, and machine 
learning that have reshaped the enzyme discovery processes.

Industrial applications of microbial 
biocatalysts

Microbial enzymes have been an essential tool in the food, 
agricultural, pharmaceutical, and cosmetics industries. 
Rapid discoveries of unique stable microbial enzymes in 
extreme conditions that are cost-effective, ease in scaling up, 
manipulation, and optimization have made the application 
of microbial enzymes an indispensable biological tool in 

various industries (Gurung et al. 2013; Moopantakath and 
Kumavath 2018). Carbohydrase are enzymes that catalysis 
carbohydrates, and their products are used as raw mate-
rials in industries (Cole et al. 2019). The application of 
carbohydrates in food industries includes baking, starch 
liquefaction, brewing, clarification of fruit juice, and thera-
peutics such as dextrin, heparin, and hyaluronan (Kolb and 
Sharpless 2003). The list of standard industrial enzymes 
and their functions are listed in Table 1 and Fig. 2. Lipases 
are crucial enzymes found in all organisms that hydroly-
sis triglycerides. In humans, they hydrolysis fatty acids 
and lipids in the pancreas and stomach. Microbial lipases 
have an essential role in biofuel, food, animal feed, dairy, 
etc. The global lipase market consists of ~ 90% microbial 
lipases (Raveendran et al. 2018). Microbial enzymes such 
as xylanases are vital in hemicellulose degradation for bio-
fuel production. Hemicellulose is one of the most abundant 
polymers and consists of xylan, xyloglucan, glucomannan, 
galactoglucomannan, and arabinogalactan (Collins et al. 
2005). The hemicellulose degradation requires multiple 
enzymes such as endoxylanases, β-xylosidases, feruloyl 
esterase, etc. Xylan is the major component of hemicellu-
lose, and xylanases that break down xylan are important in 
the industrial sector, particularly biofuel. Similarly, inuli-
nases are hydrolases that hydrolysis the β-2,1-glycosidic 
bonds that links fructose residues in inulin. Hydrolysis of 
inulin yields fructose and glucose with industrial and medi-
cal importance (Singh et al. 2007). Since inulins are the 
major carbohydrate reserve in plants, the dried biomass in 
tubers comprises up to 70% inulin (Chi et al. 2009). The 
abundance of inulin makes the application of inulinases 
attractive (Singh and Singh 2016). The list of enzymes 
with medical and industrial significance is prohibitively 
lengthy to discuss in detail in this chapter. Hence, this sec-
tion describes the recent advancements and applications of 
cellulase, pectinases, amylase, and proteases.

Enzyme engineering

3000 BC

Fermented foods in Babylon

Fermented foods in Sudan

Fermented food in
Pre-hispanic Mexico

First diastase (amylase) enzyme 
identified by Anselme Payen

Term "enzyme" coined by
 Wilhelm Kühne 

Lactic acid fermentation
by Louis Pasteur

Lock and Key mechanism
 introduced by Fischer 

Molecular cloning by Herbert Boyer

Cell-free fermentation introduced 
by Buchner De Novo enzyme design

Direct evolution method

7000–6600 BC

Alcohol production in China

Ribonuclease enzyme sequenced by Hirs, William and Moore 

2000 BC 1851 AD1500 BC 1833 AD 1877 AD
1894 AD

1897 AD 1954 AD
1926 AD

1980 AD

1973AD 1990 AD

2000 AD

First crystallized enzyme (Urease)
 by James Sumner 

Fig. 1  Schematic representation of enzymatic usages and discoveries in chronological order
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Cellulase

Cellulose is a polysaccharide containing linear D-glucose 
chains linked with β-1,4-glycosidic bonds and insoluble in 
various solvent systems, including water. Cellulose-degrad-
ing enzymes, known as cellulase, are highly abundant in all 
domains of life (Bonfá et al. 2018). Cellulase is classified 
into endocellulase, exocellulase, and β-glucosidases (Berg-
mann et al. 2014; Cunha et al. 2016). Endocellulase acts on 
the non-covalent bonds in cellulose to produce new chain 
ends. These chain terminals are broken down into smaller 
sugar units by exocellulase. The mixture of endocellulase, 
exocellulase, and cellobiases is commercially available in 
the market as cellulase (Bonfá et al. 2018; Barkalow and 
Whistler 2014). Cellulase-producing microbes such as Cel-
lulomonas sp., Pseudomonas sp., Escherichia coli, Bacillus 
sp., and Serratia marscens are mostly isolated from alkali 
soil. Cellulase applications include cotton softening, food 

mashing, wastewater treatment, and pharmaceuticals (Sethi 
et al. 2013).

Applications of cellulase

Mechanical pulping has been the primary choice for grind-
ing and refining rigid wood materials in the paper making 
process, although it is uneconomical. Application of cel-
lulase enzymes reduces up to 40% of production cost with 
no adverse effects. Its role includes reducing pulp viscosity, 
deinking paper waste, and preventing alkaline yellowing by 
applying acidophilic cellulase (Mai et al. 2004; Singh et al. 
2007; Rathnan and John 2020). In addition, endoglucanase 
isolated from Humicola insolens and β-1,4-endoglucanases 
from Bacillus sp. enhances the paper pulp treatment and 
improves drainage properties of the pulp. Hence, they 
are broadly used to manufacture biodegradable and 

Fig. 2  Industrially important 
microbial enzymes are produced 
by several species with varying 
properties. Some of the sources 
of enzymes responsible for the 
degradation of cellulose, pectin, 
starch, and proteins and their 
application are depicted in the 
figure
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environmentally friendly products such as cardboard towels 
and sanitary paper (Pandey et al. 2014; Abdul et al. 2015).

Textile industry Cellulase plays an imperative role in the 
textile industry by improving the appearance, desizing, and 
dye adherence to the fabrics (Kuhad et al. 2011). Cellulase 
also acts as an excellent finishing agent by enhancing the 
softness, water absorbance, and a clean, shiny look to the 
textile products. Endoglucanase II, produced by Tricho-
derma reesei, is widely used as a stone washing agent in 
American laundry industries (Galante et al. 2014).

Food processing industry Cellulase helps retain and main-
tain the flavour, texture, and aroma of vegetables and fruits. 
Cellulase is used as a macerating agent for decreasing vis-
cosity and bitterness. It is also combined with other macer-
ating enzymes to extract olive oils (De Faveri et al. 2008; 
Singh et al. 2019a). For instance, the combined action of 
cellulase, pectinase, and xylanase provide better extraction, 
filtration, and reduced viscosity in the wine industry (de 
Carvalho et al. 2008; Bajaj and Mahajan 2019). In addi-
tion, microbial cellulase such as those derived from Tricho-
derma species has been found to enhance feed conversion 
and increase cereal-based food digestibility (Schmoll and 
Kubicek 2003). For example, cellulase from Bacillus subti-
lis BL62, isolated from soybean residue, showed cellulase 
activity of 1.08 UI/mg proteins within 24-h incubation (Heck 
et al. 2002).

Agricultural industries Cellulase enzymes play an essen-
tial part in the agricultural sector for seed germination, 
improved root system, flowering, increased crop yield, and 
defense against phytopathogens (Bhat 2000). Cellulase also 
improves soil fertility; hence, microbes such as Aspergil-
lus, Chaetomium, and Trichoderma helps to increase soil 
fertility that promotes plant growth. Fungal cellulase can be 
isolated from several fungi such as Fusarium, Penicillium, 
Aspergillus, and bacterial cellulase from Actinomycetes and 
Ruminococcus albus (Bailey and Lumsden 1998; Harman 
and Kubicek 1998).

Pectinases

Pectins are the crucial ingredient in the middle lamella of the 
plant cell wall. They are subsequently modified and remod-
elled during plant growth and development. Pectins have an 
essential role in nutrient regulation, signalling, and defen-
sive mechanism (Ridley et al. 2001; Wyman et al. 2005). 
Extraction of pectin and its derivatives through chemical 
methods such as acid extraction, precipitation, and drying 
is commonly practiced. However, downstream purification 
processes are complicated and expensive. Pectinase from 

microbial origin has high efficiency and minimal purification 
requirements than plant sources.

Pectinases are classified as pectinesterase, depolymer-
izing enzymes (pectinase), and protopectinase. Pectinase 
found in Bacillus sonorensis MPTD1 strain esterifies the 
pectin's methoxyl group (Mohandas et al. 2018). Endopo-
lygalacturonase (EC 3.2.1.15) and Exopolygalacturonase 
(EC 3.2.1.67) are used in the food industry to produce short 
pectin molecules by hydrolyzing internal and external glyco-
sidic bonds, respectively. This increases the yield of juices, 
decreases viscosity, and determines the product crystallinity. 
Endopolygalacturonase (EC 3.2.1.15) hydrolyzes the galac-
turonic acid residues in its α-1,4-glycosidic bonds (Tapre 
and Jain 2014). Some of the microbial sources of Endopo-
lygalacturonase include Fusarium oxysporum sp., Lycoper-
sici, Aspergillus aculeatus, Rhizoctonia fragariae, Peacilo-
myces clavisporus 2A, and Saccharomyces cerevisiae (Cho 
et al. 2001; Souza et al. 2003). Exopolygalacturonase (EC 
3.2.1.67) can be extracted from Bifidobacterium longum, 
Bacillus velezensis, and Myceliophthora thermophila Bacil-
lus sp. (Liu et al. 2018; Chen et al. 2018). They produce 
galacturonic monosaccharide acid by hydrolyzing the non-
reducing end of the polymer.

Applications of pectinase Pectinase is a dominant (25%) 
part of the enzyme market due to its multidisciplinary appli-
cation such as vegetable oil extraction, fruit, wine, tea, cof-
fee, and animal feed processing (Prathyusha and Suneetha 
2011). It also acts as a bioleaching agent and helps recycle 
wastepaper (Pivnenko et al. 2015). In addition, pectinase 
regulates viscosity, clearing up, color liberation, and enhanc-
ing the overall yield of food products. Microbial pectinase is 
diverse, especially in phytopathogen such as Halobacillus, 
Thalassobacillus, Halomonas, Salicola, Bacillus sp. MFW7, 
and Bacillus sonorensis MPTD1 (Mohandas et al. 2018).

Textile processing and bioscouring of cotton fibers Tex-
tile industries constantly need sustainable and eco-friendly 
fabric processing. Caustic soda was used as a sizing agent. 
However, its toxic and damaging effects on the fabric make 
it highly undesirable. Therefore, the industry requires 
enzymes that are stable in a harsh environment yet safe and 
cost-effective. It has raised the need for novel pectinase for 
scouring (Jayani et al. 2005). Bio scouring is the applica-
tion of pectinase to remove pectins and waxes from fabrics 
under alkaline conditions. Pectinase enzymes isolated from 
the Fusarium sp. and Paecilomyces variotii have strong 
bioscouring ability, including water absorption and tensile 
strength compared with conventional methods (Rajendran 
et al. 2011; Nisha 2016).

Paper and pulp industry Pectinase is preferred because 
conventional methods use alkaline peroxide, affecting the 
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reaction and end product. Hence, microbial pectinase iso-
lated from Bacillus sp. and Erwinia carotovora is used in 
paper preparation. Pectinases from bacteria (e.g., Clostrid-
ium, Bacillus) and fungi (e.g., Aspergillus, Penicillium) are 
also widely used for the retting process, which involves 
fermentation of bark and pectin to release fibers (Chiliveri 
et al. 2016). Heat-resistant pectinases from Bacillus subtillis 
increase the pulp whiteness and reduce alkali consumption 
and production costs (Ahlawat et al. 2007).

Food processing industry In commercial food industries, 
extraction of cleared juice products without turbidity is 
desirable. Conventional methods have a higher chance 
of causing contamination and deformed maturity due to 
released heat. Pectinase breaks down pectin into negatively 
charged galacturonic acid, forming a complex with posi-
tively charged protein, resulting in a clear juice (Hmid et al. 
2016). Aspergillus aculeatus produce rhamnogalacturonase 
that can be used to macerate apples (Schols et al. 1990). 
Pectinase, particularly of fungal source, is commonly used 
in the coffee industry to remove mucilage coat. Pectinase 
from fungal species Aspergillus niger IM-6 exhibits high 
pectinase activity against wheat bran (Akhter et al. 2011; 
Alazi et al. 2018).

Amylase

Raw materials such as plant seeds, roots, and tubers are a 
rich starch sources, and their derivatives have a complex 
structure. Starch is a polysaccharide constituted by glucose 
chains connected with a glycosidic bond (Li et al. 2021). 
Amylase breaks the glycosidic bonds and produces glucose 
monomers. Amylases are used to prepare bread, detergent, 
textile desizing, paper industry, and biofuel production 
(Kumar et al. 2014). Microbial amylases are in high demand 
due to their tolerance to multiple conditions such as salt, 
temperature, pH, and different stress conditions (El-Fallal 
et al. 2012). Three major groups of amylases have been clas-
sified based on their chemical nature, α-amylase, β-amylase, 
and γ-amylase.

α‑Amylase (EC 3.2.1.1) α-Amylase is a digestive enzyme 
responsible for α bond hydrolysis in the α-linked polysac-
charide. They are in high demand for commercial processing 
of glucose and maltose. α-Amylase is the largest of amyl-
ase across all taxonomic kingdoms. Salt-loving α-amylase 
has been isolated from haloarchaea Haloferax mediterranei, 
which habitats high saline ecosystems (Perez et al. 2003; 
Menasria et  al. 2018). Thermophilic amylase has been 
reported in Bacillus sp. strain SMIA-2, while acidophilic 
amylase was isolated from Bacillus sp. Ferdowsicous (Cord-
eiro et al. 2002; Asoodeh et al. 2010). α-Amylase is used in 

the fruit juice industry, wastewater treatments, bioethanol 
production, and textile industry (Dey and Banerjee 2014; 
Kumar et al. 2014; Pervez et al. 2014; Raul et al. 2014).

β‑Amylase (EC 3.2.1.2) The second-largest amylase group is 
β-amylase, producing maltose as a hydrolysis product. There 
are various β-amylase found in bacteria, fungi, archaea, and 
plants. For example, β-amylase from salt-loving species 
Halobacillus sp. can tolerate high saline stress conditions 
(Peng et al. 2014).

γ‑Amylase (EC 3.2.1.3) The third type of amylase group is 
γ-amylase that acts on amylose and amylopectin either at 
α(1–6) and last α(1–4) glycosidic linkage and produces glu-
cose. The unique characteristic of γ-amylase is its resistance 
in acidic media (Sivaramakrishnan et al. 2006; Hiteshi and 
Gupta 2014).

Applications of amylase Amylase helps in coating paper 
with starch compounds of high molecular weight and low 
viscosity. Coating treatments with amylase enhances the 
writing quality and smoothness of paper. Common com-
mercial amylase used in the paper industry is Amizyme® 
and Fungamyl BAN® (Saxena et al. 2003).

Textile processing and bioscouring of cotton fibers Amylase 
is used to fast, secure desizing activity, and improve weav-
ing. Amylase isolated from Bacillus has indispensable appli-
cation in the textile industry. Mutant strains are prepared by 
treating wild strains with ethyl methanesulphonate. Bacillus 
amyloliquefaciens EMS-6 had a 1.4-fold higher α-amylase 
production than the wild type (Haq et al. 2010).

Food industry Amylase has a wide application in food 
industries such as fruit juice processing, brewing, cakes 
production, and baking for reducing dough viscosity and 
improving quality such as taste, color, and quantity. Starch 
modification activity by amylase from Bacillus sp. increased 
with temperature (Souza et al. 2015). About 90% of all 
detergent contains amylase enzymes to remove stains and 
dirt from the fabrics or cloth without altering the maturity. 
Amylase can also act in lower temperatures and alkaline 
conditions. As a result, whiteness in the fabrics is increased 
by decreasing the adhesion of the starch compound. Amyl-
ase isolated from Bacillus or Aspergillus has high detergent 
activity (Mitidieri et al. 2006; Souza et al. 2015).

Proteases

Protease is a naturally occurring enzyme found in most liv-
ing cells performing vital physiological functions such as 
post-translational modification, inflammation, zymogen 
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activation, and blood coagulation (Martin et al. 2021). They 
have a central function in nitrogen metabolism and absorp-
tion of amino acids into cells through protein hydrolysis 
(Sabotic and Kos 2012; Souza et al. 2015). They are the 
single most prominent gene family making up approximately 
2% of our genome (Li et al. 2013). However, most protease 
initially produced in nature are inactive precursors called 
zymogens or proenzymes to prevent unwanted proteolysis. 
To obtain the active form, they undergo environmentally 
induced conformational changes or cleavage of the activa-
tion segment (Li et al. 2013).

Proteases belonging to the hydrolase class (EC.3) are 
grouped under the peptide hydrolases or peptidases subclass 
(EC 3.4). Proteases that act on the N- or C-terminal of the 
substrate is known as exopeptidases (EC 3.4.11–19), and 
those that act within the substrate are known as endopepti-
dases (EC 3.4.21–99). The exopeptidases are further subcat-
egorized as aminopeptidases (EC 3.4.14) that act on the N 
terminus or carboxypeptidases that acts on the C terminus 
(Motyan et al. 2013). Like other enzymes, protease is also 
pH-dependent. Hence, protease is also categorized according 
to their optimum pH, such as acidic proteases (pH < 7.0), 
neutral (around pH 7.0), or alkaline (pH > 7.0) (Gupta and 
Ayyachamy 2012; Tavano et al. 2018).

Applications of protease Microbial protease has applica-
tions in the food, dairy, and textile industries. Protease is 
the most in-demand industrial enzyme and covers up to 
65% of the global enzyme market (Pant et al. 2015). They 
have a wide array of applications ranging from detergents to 
pharmaceuticals. They are used in food, dairy, textile, and 
contact lens cleaner. In academia, they have wide applica-
tions such as peptide synthesis, DNA extraction (digestion 
of unwanted proteins), tissue culture (tissue disassociation), 
and removal of affinity tags (expression cloning) (Motyan 
et al. 2013). One of the primary producers of proteases in 
the industry is Bacillus subtilis due to its wide spectrum of 
properties.

Protease production is preferred from microbial origin 
due to its ease in production processes. Most microbial 
proteases are extracellular and secreted into the fermenta-
tion medium, making it easier for downstream processing 
(Savitha et al. 2011). In addition, fungal protease production 
has also been highlighted in the past due to its relatively 
low media cost, faster production, and ease of separation 
of mycelium by filtration (Anitha and Palanivelu 2013; 
Souza et al. 2015). However, enzymes produced should 
be safe, including the microorganism producing it. Hence, 
such safety measures are checked and certified by the Joint 
FAO/WHO Expert Committee on Food Additives (JECFA) 
(Tavano et al. 2018). One of the significant advantages of 
fungi mediated protease production is its safety tag since 
they are mostly considered GRAS (generally regarded as 

safe) (Germano et al. 2003; Souza et al. 2015). Some of the 
fungal protease producers used in industry are Aspergillus 
species, Penicillium species, Mucor pusillus, and Mucor 
miehei (Souza et al. 2015).

Meat industry In the meat industry, one of the factors that 
determine meat quality is meat tenderness. The toughness 
of meat is depended on several factors, including pH, tem-
perature, muscle type, and age of the meat source (Anderson 
et al. 2012; Arshad et al. 2016). Proteases are used to break 
down the peptide bonds in muscles and hydrolyze compo-
nents of connective tissue fibres such as collagen and elas-
tin. For this purpose, proteases from fungal and bacterial 
sources, such as Aspergillus oryzae and Bacillus subtilis, are 
widely used as the US Department of Agriculture (Arshad 
et al. 2016) approves them.

Dairy food processing Food products contain complex con-
stituents, including proteins and peptides that interact to get 
unique features of each food (Tavano et al. 2018). Protease 
treatment of food products can enhance the texture, flavor, 
aroma, and digestibility (Lacou et al. 2015). In cheese mak-
ing, a high specific protease is used to disturb the casein 
micelles. Traditionally, this is achieved by applying chymo-
sin protease from calf rennet which hydrolysis the peptide 
bond in Phe105, Met106 of kappa casein to form para-casein 
and macro peptides (Tavano et al. 2018). It destabilizes the 
casein micelles and aggregates to form milk coagulation. 
The product is precipitated and form gel-like properties, 
further developing into a continuous chain of 3D structure. 
Microbial cultures can be used as starter cultures to speed 
up the cheese ripening process. Several proteases of micro-
bial origin can perform similar actions targeting different 
peptides. This gives the option to produce cheese of dif-
ferent quality, texture, and aroma. Several microbial spe-
cies are used for protease production, such as Lactobacillus 
acidophillus, Aspergillus oryzae, Endothia parasitica, Irpex 
lactis, etc. (Neelakantan et al. 1999).

Anti‑biofilm Several pathogenic bacteria form biofilm for 
protection against drugs (Sharma et al. 2019). The protec-
tive biofilm coating nullifies the effectiveness of drugs on 
such pathogens. Although biofilm formation varies substan-
tially between bacterial types, there are specific common 
properties involved in all of them, such as forming a thick 
extracellular matrix accounting for over 90% of the biomass, 
attachment to the surface, and aggregation of cells (Mitro-
fanova et al. 2017). Biofilm formation starts with the initial 
attachment of the bacteria to the surface through autoly-
sin and adhesion, which becomes irreversibly attached and 
accumulates further in several layers (Rao and Kumavath 
2020). The cells are released into the surrounding environ-
ment upon maturation, leading to further biofilm formation 
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(Elchinger et al. 2014). Current antibiotics could inhibit such 
pathogens if the biofilm is destructed. For example, Serra-
tia marcescens extracellular biofilm matrix was effectively 
degraded using subtilisin-like protease and glutamyl endo-
peptidase from Bacillus pumilus (Mitrofanova et al. 2017). 
Microbial protease such as serine protease from S. epider-
midis and serratiopeptidase from S. marcescens has also 
been an effective biofilm suppressor against S. aureus and 
Listeria monocytogenes, respectively (Longhi et al. 2008; 
Iwase et al. 2010). In addition, protease enzymes of other 
classifications such as flavourzyme (from fungal Asper-
gillus oryzae), neutrase (from Bacillus amyloliquefaciens 
under Firmicutes phylum), and serine endopeptidase alcal-
ase (from Bacillus licheniformis under Firmicutes phylum) 
has been shown to exhibit anti-biofilm formation through 
exolytic and endocytic mechanisms (Elchinger et al. 2014).

Resources and prospects of novel enzymes

Although several thousands of microbial enzymes have been 
identified with bioactivity, the enzyme market reports only 
about 200 enzymes of microbial origin (Ranjith et al. 2008; 
Li et al. 2012a, b and Kumavath et al. 2015). The market 
is highly competitive, and the profit margin is minimal; 
hence, dominated by a few companies such as Novozymes, 
DuPont, Roche, Amway, and BASF. Bioprospection of 
novel enzymes has been extensively carried out in terres-
trial ecosystems due to its ease of accessibility for sampling. 
In the recent decade, extremophiles from extreme environ-
ments such as saltern, hot springs, Arctic sea, etc., have also 
been harnessed for novel enzymes. The marine ecosystem 
is a massive reservoir of enzymes and has gained interest 
in recent years (Zhang and Kim 2010; Rao et al. 2017). 
However, the vast marine ecosystem is still under-sampled. 
Besides, marine ecosystems such as mangroves forest sedi-
ment harbour a considerable diversity of microbes having 
unique biological functions. The variety of microbial com-
munities in marine environments such as mangrove sedi-
ments differs worldwide, raising the odds for novel enzyme 
discoveries (Imchen et al. 2017).

Metagenomic approaches for novel enzyme 
discovery

Enrichment of environmental/biological samples in selec-
tive media for pure culture isolation and enzyme charac-
terization has been the primary approach for novel enzyme 
bioprospection. However, most enzymes are re-discovered 
through the culturable process due to the narrow spectrum 
of culturable microbes. It is a severe setback because more 
than 98% of the microbes are uncultivable under standard 

laboratory conditions and growth media (Garrido et al. 
2017). A recent approach to tackle the issues is the applica-
tion of metagenomic that can address the challenges in two 
broad ways: sequence and expression-based metagenomics. 
In sequence-based metagenomic, novel enzymes are mined 
based on protein homologs of novel sequences against a 
database of already known enzymes. Several gigabytes of 
metagenomic data are screened for proteins having identical 
homologous sequences in this technique. Such sequences are 
synthesized and inspected to express in a suitable vector-host 
system for desired activity. In expression-based metagen-
omic, random metagenomic DNA fragments of ~ 300 bp 
to several kilobases are ligated onto an appropriate vector, 
which is then screened for expression against the desired 
substrate or phenotypic changes. Using functional metagen-
omics, novel enzymes that could not have been predicted 
with sequence-based techniques have been discovered, such 
as novel β-galactosidases and novel esterase of GDSGG 
motif (Cheng et al. 2017; Jayanath et al. 2018). An amalga-
mation of sequence and expression-based metagenomic is 
known as screening gene-specific amplicon from metage-
nomes (S-GAM). A primer is designed to amplify the full-
length gene of interest within a metagenome; the amplicon 
is subsequently cloned and screened for expression. Alcohol 
dehydrogenase (ADH) and phenyl acetaldehyde reductases 
have been discovered using the S-GAM technique (Itoh et al. 
2014 and 2016).

The mining of novel enzymes can be tedious due to the 
exponential increases of metagenomics data and the com-
putational power requirements. Therefore, Anastasia was 
developed as a Web server application (Koutsandreas et al. 
2019). Anastasia is an acronym for “automated nucleotide 
amino acid sequences translational platform for systemic 
interpretation and analysis.” It has been used extensively 
for the mining of enzymes from thermal springs whole over 
the world to find industrially interested enzymes. For exam-
ple, the Anastasia platform discovered a novel thermostable 
esterase EstDZ4 from Krisuvik, Iceland (Koutsandreas et al. 
2019) (Table 2).

Strategies for novel enzyme development

Genetic engineering has opened up the possibility of 
developing enzymes of desired properties with low pro-
duction costs (Jemli et al. 2016). The enzymes can be 
engineered to operate on a range of substrates and con-
centrations, extremes of temperature, pH, pressure, and 
stability in non-aqueous solvents to facilitate substrate 
solubility and product extraction (Lin and Tao 2017). Nat-
urally, discovered enzymes do not possess such attributes 
since they are adapted to the natural environment. Hence, 
natural enzymes would have the optimum functions at 
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the physiochemical condition observed in nature. There-
fore, modification of the enzyme is required to provide 
the necessary stability and activity (Milner and Maguire 
2012). Protein engineering offers exceptional prospects for 
designing industrial enzymes at lower production costs 
(Jemli et al. 2016).

Directed evolution Directed evolution commences with a 
parent protein and aims to enhance selectivity or protein 
stability on a particular substrate. Directed evolution for 
enzyme engineering consists of two main steps, i.e., gener-
ating a library of gene variants through random mutagenesis 
or recombination, followed by screening the variants with 
the preferred function (Arnold and Volkov 1999; Arnold 
and Georgiou 2003; Castle et al. 2004). The resultant gene 
can be cloned into a suitable host to prepare starter culture, 
which can be used as a biocatalyst in industrial processes 
(MacBeath et  al. 1998). Practically, repeated rounds of 
mutations and selection have to be carried out to improve 
protein stability and enzymatic function (Floor et al. 2014). 
The best performing variant can be selected as the template 
in each cycle. The development of hyperactive biocatalysts 
reduces the production costs of industrial goods and reduces 
industrial waste (Hughes and Lewis 2018; Qu et al. 2020). 
Directed evolution of natural or repurposed enzymes is 
based mainly on the rapid and high throughput library crea-
tion and screening of the desirable products (Turner 2009). 
A new technique for mutation library creatures is the on-chip 
solid-phase gene synthesis (Packer and Liu 2015).

Directed evolution can also be based on the shuffling 
of genes homologues to the gene of interest. One of the 
strengths in directed evolution, compared to rational design, 
is that prior knowledge of the structural information is not 
required (Waldo 2003). This is particularly important for 
novel natural enzymes (Table 3) without experimentally elu-
cidated structures. Modifying natural enzymes is necessary 
since most enzymes do not function at their best efficiency 
outside of their natural microenvironment. Hence, modifi-
cation of the enzymes through directed evolution is one of 
the primary approaches to obtain improved traits such as 
selectivity, stability, and activity (Zeymer and Hilvert 2018).

Rational design Rational protein engineering is a technique 
where enzymes are engineered with enhanced desired fea-
tures from an existing enzyme without losing the original 
properties, including its stability, specificity, and activity 
(Milner and Maguire 2012; Dinmukhamed et al. 2021). 
In rational design, protein structures are initially analyzed 
in silico (Fig. 3) for possible modifications to enhance the 
desired features (Ding and Dokholyan 2006), followed by 
in vitro gene alteration through site-directed mutagenesis 
(SDM) and transforming into a suitable expression host, 
e.g., E. coli (Bornscheuer and Pohl 2001). The insert is 
expressed and purified to analyze the desired properties 
(Hart and Tarendeau 2006; Michael et al. 2015). Based on 
the target sites, SDM of the candidate residues is performed 
to generate multiple libraries of mutant strains. The strains 
are screened for selection of desired functionally enhanced 
variant.

The first step in the rational design of enzymes is the 
multiple sequence alignment (MSA) of the candidate 
sequence against a reference database to identify potential 
sites involved in substrate specificity and functional site 
residue that can be mutated for variant library generation 
(Steiner and Schwab 2012). A standard approach to perform 
MSA for highly similar homologous sequences is through 
the progressive alignment algorithm ClustalW (Reddy and 
Fields 2022). The alignment data serves as the raw informa-
tion for co-evolutionary analysis based on the evolutionary 
substitution of the amino acid residues under evolutionary 
pressure (Modi et al. 2021; Frappier and Keating 2021). Co-
evolutionary analysis helps identify functional sites and pro-
tein structures that can assist in the customization of puta-
tive functional sites. Several software implements multiple 
algorithms for the co-evolutionary analysis. For instance, 
OMESKASS is software that implements Observed Minus 
Expected Squared (OMES) for co-evolutionary analysis. 
Similarly, the Fodor package was recently developed that 
have several algorithms, including mutual information (MI) 
(Kuhlman and Bradley 2019), McLachlan-based substitu-
tion correlation (McBASC), and statistical coupling analy-
sis (SCA). Among those algorithms, it has been reported 
that McBASC (Swint et al. 2021) and OMES have better 

Table 2  List of modern omics tool for the enzymatic research

Omics methods Tools Enzymes discovered Reference

Genomics Next-generation sequencing Proteases, cellulase, β-glycosidase, pectinase, 
Tannas, di-chlorophenol hydroxylase

Sun et al. 2020 Chai et al. 2020 Bergmann et al. 
2014 Singh et al. 2012 Yao et al. 2011 Lu 
et al. 2011

Transcriptomics RNA-sequencing Cellulase, xylanase, pectinase Yan et al. 2017 Alazi et al. 2018
Proteomics LC–MS, MALDI Keratinase, γ-glutamyltranspeptidase, chi-

tosanases, glicosidases
Parrado et al. 2014 Kirkland et al. 2008

Metabolomics LC–MS, GC–MS, NMR Cellulase, glycolytic enzymes Vanee et al. 2017 Prosser et al. 2014 Ming et al. 
2018 Amer and Baidoo 2021
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performance for less conserved sequences and high back-
ground noise (Fodor and Aldrich 2004). MSA can be curated 
using T-Coffee, Mafft, or Muscle programs individually. 
Using such MSA curation, seven residues were identified 
as coevolved residues in 3-deoxyD-manno-octulosonate 
8-phosphatesynthases (KDO8PS) (Astl et al. 2019). Once 
the customization of the functional sites is established, their 
3D models are generated using either (i) homology model-
ling that is based on comparative modelling or threading 
by using a homologous protein with experimentally veri-
fied 3D structure (Wiltgen 2018) or (ii) ab initio model-
ling which does not rely on preexisting homologous protein 
structure (Chakraborty et al. 2018). The specific method and 
design strategy of natural biocatalysts for optimizing various 
enzymes are shown in Table 3.

The MSA can be further refined in the “integrated sys-
tem” by using the noise-based information as evolutionary 
information obtained from the MSA, such as the gaps and 
SNPs to improvise the rational enzyme design and perfor-
mance (Li et al. 2012a, b). The mutations observed through 

MSA can be used to compensate for the negative effects of 
one mutation by introducing other mutations in the same 
coevolving residue pair. The integrated system also inspects 
for possible improvements such as faster protein folding, 
catalyzation, and signalling. It also aims to increase the 
protein stabling by introducing amino acids such as proline 
and developing disulfide bonds (Lancaster et al. 2018). The 
rational design also aims to modify the charged residue posi-
tions in the binding sites to modify the cofactor or substrate 
specificity.

Semi rational design Site saturation mutagenesis (SSM) is 
an efficient approach for directed evolution (Qu et al. 2020). 
It essentially involves the replacement of target resides with 
other amino acids. It is commonly performed with degen-
erate primers with a randomized codon (Siloto and Wese-
lake 2012). A library of all possible mutations in a prede-
termined position can be generated using this technique. 
Implementation of SSM on a lipase, from Bacillus subtilis, 
with 181 amino acids generated 181 libraries. Screening of 

Table 3  The design strategies and methods used to optimization targeted enzymes

Enzyme name Optimization target Method and design strategy Function References

Xylanase pH optium Rational design Paper and pulp industry 
pKaf prediction

Pokhrel et al. 2013

Phosphoglycerate dehydro-
genase

Allosteric sites Rational design Inhibits the synthesis of 
serine and Glycine in 
cancer cells

Wang et al. 2017

Amine oxidase Substrate range Rational design Medical application Ghislieri et al. 2013
Carboxylesterase 1 Fluorescent Probe Rational design Optical properties Tian et al. 2019
2-Phenylcyclopropane 

carboxylic acids
Rational design inhibiting O-acetylserine 

sulfydrylase
Pieroni et al. 2016

Dipeptidyl Peptidase 4 Pharmacokinetics Rational design Treatment of type 2 dia-
betes

Li et al. 2016

Tipranavir Non-peptidic activity Rational design Antiviral activity Doyon et al. 2005
Xylose dehydrogenase Thermostability Rational design Applied to construct 

xylose/O2-based biofuel 
cell

Feng et al. 2016

Orthogonal aminoacyl-
tRNA synthetases

Enzymatic efficiency Directed evolution Enables site-specific instal-
lation

Bryson et al. 2017

Oxygenases Hydroxylation optimizing Directed evolution To generate fluorescent 
compounds

Joo et al. 1999

Cytochrome P450 Activities substantially Directed evolution Nitrene transfer reactions Roiban and Reetz et al. 
2015

Pectate lyase Thermostable Directed evolution Cotton fabric Solbak et al. 2005
Haloalkane dehalogenase 200‐fold longer half‐life at 

60 °C
Directed evolution Hydrolysis of lindane Floor et al. 2014

TIM-barrel proteins Thermostable De novo Huang et al. 2016a, b
Peroxidases Thermostable De novo Reduction of H2O2 Watkins et al. 2017
α-Helical barrel Introducing new activities De novo Hydrolyses pnitrophenyl 

acetate
Burton et al. 2016

Retro-aldol enzymes Active site for Multiple 
reactions

De novo Explicit  H2O Jiang et al. 2008

Glyoxalase synthase 70-fold higher activity De novo Synthesis of acetyl-CoA Dinmukhamed et al. 2021
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the libraries resulted in a novel nitrilases variant (Chica et al. 
2005; Shen et al. 2021).

Combinatorial active‑site saturation test (CAST) Enhance-
ment of the enzymes is also carried out by using saturation 
mutagenesis (SM) targeting the active site to increase the 
substrate acceptation of an enzyme (Georgescu et al. 2003; 

Reetz et al. 2005). For this purpose, Combinatorial active-
site saturation test (CAST) was developed to introduce SM 
to increase the substrate of an enzyme. In this technique, 
amino acids with side chains close to the binding sites are 
selected for random repositions (Qu et al. 2019). CAST-
ing can be in cycles wherein the enhanced enzyme is used 
as the template for another cycle of CASTing (Osbon and 

Fig. 3  A standard rational engi-
neering method for hyper-pro-
duction of desired compounds 
using conventional in silico and 
metagenomic approach
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Kumar 2019). The CASTing can also produce mutations 
with a synergetic effect when multiple sites undergo SM 
simultaneously; however, this can exponentially increase the 
library size (Georgescu et al. 2003).

Iterative saturation mutagenesis (ISM) ISM technique is 
based on semi-directed evolution involving SM. In this 
technique, the primary step is identifying sites with single 
or multiple amino acids. The selected sites are then mutated 
and processed to screen improved variants (Qu et al. 2021). 
The variant is subsequently used as a template for saturation 
mutagenesis at multisite. Thus, it involves variant library 
generation, screening, and enrichment of the variant for mul-
tiple cycles. Although the steps involved in ISM are similar 
to that of regular directed evolution (Sayous et al. 2020), it 
differs substantially in selecting the sites and thus is lower 
required for library screening.

Focused rational iterative site‑specific mutagenesis 
(FRISM) The development of CAST and ISM has greatly 
assisted in the generation of novel variations with enhanced 
properties. However, both techniques require screening of 
many variations and libraries, which can be time-consum-
ing and cost-ineffective (Li et al. 2020; Qu et al. 2020). 
Hence, FRISM was developed to avoid library generation 
to increase the turnaround time and be cost-effective. In 
FRISM, the initial step is the section of a site with the aid of 
the CAST technique (Acevedo et al. 2020). The amino acid 
in the template is exchanged with a set of few amino acids 
predicted with the help of tools used in rational designs and 
other bioinformatics tools (Höhne et al. 2010). Hence, only a 
few variants are generated that can be screened rapidly. The 
next step is the selection of the best variant to be used as the 
template for mutation at another CAST site.

De novo enzyme design Computational tools have a cen-
tral role in predicting the 3D structure and functions of a 
given amino acid sequence that is not of natural origin. The 
de novo design of proteins was first demonstrated in 1998 
by preparing four-helix bundle protein (Bolon et al. 2002; 
Cochran et al. 2005). De novo enzyme designing requires 
understanding physical principles involved in protein fold-
ing (Baker 2019). Advancement in bioinformatics has made 
it possible to predict the structure from any amino acid 
sequence with high accuracy at the atomic scale. Hence, 
de novo design represents a potential approach to design 
enzymes from scratch, instead of modifying naturally occur-
ring enzymes, to address the challenges faced in the indus-
trial and biomedical industries.

The most common computational tools for de novo 
design are the Rosetta developed in the David Baker labo-
ratory (Dou et al. 2018; Richter et al. 2011). It is primarily 
a package of multiple tools such as protein design, docking, 

structure, and interaction prediction for DNA and proteins. 
De novo design process in Rosetta has four main stages: (i) 
formulation of the optimal catalytic mechanism and ideal 
active site, (ii) identification of active site localization in a 
scaffold protein from a scaffold library, (iii) optimization of 
the residues to obtain stable interaction(s) with primary cata-
lytic residues, and (iv) assessment and rank based design-
ing of the sequences (Richter et al. 2011). In addition, de 
novo design could optimize the electric field by introducing 
amino acid substitution to achieve free energy stabilization 
(Vaissier and Head 2019). The lowest-energy state of the 
designed structure is a crucial step in the designing process. 
The de novo designed enzyme is processed for characteriza-
tion only if the structure-prediction calculations align with 
the developed system (Huang et al. 2016a). De novo design, 
in addition to industrial biocatalyst (Table 3), has also been 
proposed as an ideal tool for formulating peptides and small 
molecules for therapeutic applications (Bellows and Floudas 
2010).

The infinitely large number of possible combinations of 
amino sequences and their 3D conformations is a major chal-
lenge for the formulation of algorithms to predict structure–
function. However, the development of novel techniques 
such as omics, sophisticated databases, and machine learn-
ing models has helped advance enzyme designing such as de 
novo design by finding patterns in sequence 3D structures.

High‑throughput avenues for enzyme 
technology

In the field of enzymology, high-throughput screening 
(HTS) methods are emerging, and resourceful avenues have 
expanded into a multi-level approach for enzyme designing 
and selection with the help of vast genomic, transcriptomic, 
proteomic, and metabolomic resources (Mazurenko et al. 
2020; Yi et al. 2021). Directed evolution, rational, or de 
novo design are the classical approaches for enzyme engi-
neering, which are faced with significant challenges due 
to the infinite possibilities in combinatorial arrangements, 
which is further complicated by the lengthy protein sequence 
(Bonk et al. 2019). The traditional experimental and compu-
tational techniques combined with advanced next-generation 
high-throughput technology can unleash exciting methods 
for generating novel enzymes (Gupta et al. 2021). Novel 
enzyme discovery and development can be accomplished by 
using various computational and contemporary methods, as 
mentioned in Fig. 4.

Machine learning in enzyme biology Machine learn-
ing (ML) is distinct from the traditional methods of 
rational designing, directed evolution, or de novo enzyme 
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designing (Mazurenko et al. 2020; Siedhoff et al. 2020). 
Machine learning models are implemented to analyze 
the key properties required to develop suitable enzymes, 
such as the relationship between substrate and enzyme 
interactions (Ralbovsky and Smith 2021; Siedhoff et al. 
2020). Various protein sequence databases, such as Uni-
Prot, BRENDA, PDB, PubChem, PubMed, and KEGG, 
are publicly available. Machine learning models can 
infer enzymatic properties such as quantitative struc-
ture–activity/property relationship (QSAR/QSPR) and 
quantitative sequence-activity model (QSAM) from such 
databases. Improving the activity of enzymes is one of 
the major objectives in protein engineering. As a proof 
of concept, Liao et al. (2007) produced several variants 
of proteinase K using machine learning models. These 
variants were reported to exhibit ~ 20-fold higher activity 
than the wild type.

Machine learning models can also predict essential genes 
that can be used as a drug target. Plaimas et al. (2010) have 
implemented such an approach by construction machine 
learning models with metabolic networks and genome-
wide knockout data. The authors were able to identify 35 
enzymes as potential drug targets in Salmonella typhimu-
rium. Another critical challenge in enzyme design is the 
accuracy in identifying active metal-binding sites. Such 
identification is critical since more than 40% of the metallo-
enzymes are capable of performing all classes of enzymatic 

reactions. To apprehend this challenge, Feehan et al. (2021) 
developed a decision-based machine-learning model that 
was able to identify protein-bound metal as enzymatic with 
92.2% precision. This model can be used to study enzymatic 
mechanisms and design novel enzymes. ML models can also 
derive critical information from protein sequences such as 
enantioselectivity, thermostability, catalytic activity, speci-
ficity, and physicochemical features such as conservation 
information, secondary structure, and amino acid composi-
tion (Bonk et al. 2019; Gupta et al. 2021).

In enzyme engineering biology (EEB), novel tech-
nologies such as ML can help to discover or design novel 
enzymes from the huge data available in various data librar-
ies generated through genomic, transcriptomic, proteomic 
and metabolomics (GTPM) (Tan et al. 2019; Yi et al. 2021). 
However, one major obstacle in machine learning is the lack 
of machine-friendly databases. In addition, some of the data-
bases are mis-annotated, populated with disproved results, or 
no longer maintained. Hence, choosing the right datasets for 
machine learning is critical to avoid feeding inaccurate data 
for model development. Although several excellent data-
bases are widely available, it is important to follow the popu-
lar FAIR principles of data entry in databases, i.e., findable, 
accessible, interoperable, and reusable (Mazurenko et al. 
2020). This would ensure better data usage with minimal 
efforts for manual data tidying and ease in data formatting 
suitable for different projects.

Fig. 4  Schematic illustration 
of novel enzyme designing 
through a development of 
machine learning models and b 
nanotechnology for antioxidant, 
oxidase, and biocatalysis with 
nano-encapsulation

1826 Applied Microbiology and Biotechnology (2022) 106:1813–1835



1 3

Applications of nanotechnology as biocatalysts Nanotech-
nology has emerged with strong potential applications in 
enzyme engineering (Singh et al. 2019b). Nanomaterials 
are highly sensitive and are already developing to detect the 
Ebola virus through Nanozymestrip that offers ~ 100-fold 
higher sensitivity than standard strips (Duan et al. 2015). 
 MnO2 nanosheets have also been used for gene silencing 
by releasing  Mn2+ ions in the presence of intracellular glu-
tathione (GSH) (Fan et al. 2015). Nanotechnology has found 
numerous applications in medicine and health systems, bio-
sensing, clinic diagnostic, and high-value enzymes (Zhu 
et al., 2021; Chen et al., 2021).

Nanoparticles have been postulated to be inert yet pos-
sess biological activity. For instance, they have antioxidant 
activity similar to that of peroxidases, superoxide dismutase, 
and such antioxidants (Gao and Yan 2016). Nanoparticles 
with enzymes characteristics are known as nanozymes. They 
have efficient biological activities such as hydrolyzing toxic 
organophosphates (Singh 2019a). Nanozymes have impor-
tant applications in genetic testing, diagnosis, drug discov-
ery, environmental surveillance, and food safety inspection 
(Wang et al. 2019; Elegbede and Lateef 2021).

Enzymes can be immobilization-using nanotechnology 
while still preserving the catalytic activity by preventing 
unfolding or aggregation (Singh et al. 2019b). This can be 
further extended to store enzymes in nano-sized solid, liq-
uid, and gel media (Soriano 2018). Nanomaterials including 
nanostrips, nanoparticles, nanofibers, nanoballs, nanodots, 
nanosheets, nanotubes, nanocapsules, and single enzyme 
nanoparticles (SENs) are also available for efficient enzyme 
storage without losing their catalytic activity and physico-
chemical properties. Furthermore, such nanomaterials can 
be reused; hence, they are eco-friendly and cost-effective 
(Sukumaran et al. 2015; Soriano 2018). Enzyme immobili-
zation using nanopolymeric matrix, nanocarriers, and nano-
particles can enhance efficiency and specificity (Das et al. 
2020). Enzymes in special solid structures would maximize 
their environmental stress tolerance, specificity, catalytic 
activity, selectivity, reusability, and recovery.

Nanomaterials can also be used to encapsulate enzymes, a 
process termed nanoencapsulation, to protect from external 
degradations and enhance their activity. Nano-encapsulation 
can transport and release molecular cargos such as DNA-
zyme into targeted cells for activating specific biocatalytic 
reactions (Wang et al. 2019). Nanoparticle encapsulation of 
superoxide dismutase (SOD-NPs) was shown to be highly 
effective in treating ischemia–reperfusion injury. SOD-NP-
treated mice showed 75% survival rate without losing impor-
tant neurological functions, maintained blood–brain barrier 
integrity, lowered ROS formation, and prevented apoptosis 
of neurons (Reddy and Labhasetwar 2009).

Nanozymes can also be enhanced by conjugating with 
amino acids. For instance, Fan et al. (2015) conjugated 

 Fe3O4 nanozyme with histidine that strengthened the affin-
ity to the substrate and ~ 20-fold stronger antioxidant activ-
ity. Single-atom nanozymes has been used to mimic the 
spatial structure of natural cytochrome P450 active centers 
that showed high oxidase-like activity (Huang et al. 2019). 
So far, 540 nanozymes of potential applications in various 
sectors have been developed from 350 research groups in 
different countries (Meng et al. 2019).

OMIC approaches to find novel enzymes OMIC technol-
ogy comprises genomics, transcriptomics, proteomics, and 
metabolomics that analyze the overall genome, transcripts, 
proteins, and metabolites without any specific target. Hence, 
OMIC technology provides an unbiased view of the total 
contents of a sample (Horgan and Kenny 2011). OMIC tech-
niques rely on technological advancements, and it is now 
widely implemented for high-throughput, cost-effective, and 
time-efficient generation of genome, expression, and enzy-
matic profiles (Yang et al. 2020). Although OMIC technol-
ogy is still in its infancy, it has already contributed tremen-
dously to enzyme discovery, interrogating the entire pool 
of transcripts, proteins, metabolites, and genome (Table 2) 
(Ebrahim et al. 2016; Tatta et al. 2021). This also leads to 
the generation of an incredible amount of nucleic and protein 
sequences in databases and repositories, which are the foun-
dation for novel enzyme discovery (Zaparucha et al. 2018). 
Several terabytes of genomic and proteomic data are actively 
used for novel enzyme design and discovery. For instance, 
using high-throughput proteomics, the primary metabolism 
in Streptomyces coelicolor for carbon control were found 
to be regulated by glucose kinase-dependent and independ-
ent pathways (Gubbens et al. 2012). Genomic-based novel 
enzyme discoveries involve the generation of clones librar-
ies from the fragmented genomic sequences followed by an 
expression in suitable vectors such as a plasmid, cosmid, 
and lambda to express the desired protein. Implementation 
of such multi-OMIC techniques has helped in the discovery 
of enzymes with immense implications in biotechnology, 
bioremediation, food, and medical industries such as lipases 
(EC 3.1.1.3) (Vorapreeda et al. 2016), cellulase (EC 3.2.1.4) 
(Hassan et al. 2018), laccase (EC 1.10. 3.2) (Sirim et al. 
2011), and dihydrodipicolinate synthase (EC 4.3.3.7).

OMICs has also advanced the implication of microbes and 
their metabolites in bioremediation. Through OMICs tech-
nology, novel biocatalysts and biomarkers can be identified 
to monitor toxic contaminants in sewage, garbage, landfills, 
and industrially polluted water logs (Pandey et al. 2019). It 
has also helped identify several enzymes capable of degrading 
toxic compounds in the environment (Madhavan et al. 2017). 
For example, Brevibacterium epidermidis EZ-K02 was found 
to degrade benzoate, catechol, arsenic, cobalt, and cadmium. 
Similarly, nitrate and uranium waste were metabolized by 
Anaeromyxobacter sp. (Tatta et al. 2021).
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The advanced OMICs tools and related analytical tech-
niques have tremendous scope in nutritional science. OMICs 
has also contributed to the advancements of personalized or 
precision nutrition by emphasizing multiple factors, includ-
ing food quantity, food analytics, nutrition-based diseases, 
and public health programs. Instead of population-based 
dietary recommendation, DNA-based dietary recommen-
dation results in greater nutrient absorption from the diet 
(Bush et al. 2020). However, the high cost of OMIC tools 
and instruments is prohibitive for the public to access the 
personalized nutrient technology. Hence, further challenges 
would be for superior tools and models and at an affordable 
price tag.

Ultra-high-throughput technologies have an immense 
implication on healthcare. OMICs have an indispensable 
role in mapping thousands of genetic variants, which can 
be automatically processed with computational pipelines to 
associate such variations with underlying diseases and dis-
orders (Hasin et al. 2017). It has also helped in the develop-
ment of next-generation disease diagnostics tools such as for 
tuberculosis (Haas et al. 2016) and non-alcoholic fatty liver 
disease (NAFLD) (Perakakis et al. 2020).

Conclusion

Microbial enzymes are an indispensable part of the cur-
rent industrial and healthcare processes. They have been 
used since the dawn of ages. However, the ever-increasing 
requirement for high yield and specificity enzymes has sur-
passed the supply. Harnessing microbial enzymes requires a 
novel approach different from the traditional methods. The 
development of novel methods for screening and modifying 
enzymes is of acute need. Integrating classical and advanced 
technology is a new avenue for efficient research in the bio-
prospecting of enzymes. Hence, it would be appropriate to 
encourage academia and industry research to pave novel 
techniques to tap the potential of un-culturable microbes. In 
addition, the development of algorithms and artificial intel-
ligence for bioprospecting enzymes from the publicly avail-
able genome and metagenome data is the need of the hour.
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