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Abstract

According to the Food and Agriculture Organization of the
United Nations, approximately 1.3 billion tons of food is
wasted each year, equivalent to approximately one-third of
world production. Agri-food wastes are the source of proteins,
carbohydrates, lipids, and other essential minerals that have
been exploited for value-added products by the development
of biorefineries and sustainable business as important ele-
ments of circular economies. The innovation and materiali-
zation of these types of processes, including the use of
disruptive technologies on microbial bioconversion and
enzyme technology, such as nanotechnology, metabolic en-
gineering, and multi-omics platforms, increase the perspec-
tives on the waste valorization process. Lignocellulolytic
enzymes, pectinases, and proteases are mainly used as
catalyzers on agri-food waste treatment, and their production
in house might be the trend in near future for agro-industrial
countries. Another way to transform the agri-food wastes is
via aerobic or anaerobic microbial process from fungal or
bacterial cultures; these processes are the key to produce
waste enzymes.
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Introduction
The concept of circular economy describes the use of
waste from one industry as raw material to another one
and is based on the reduce, reuse, recycle, recovery, and
restore (5R) principle of the sustainable development,
changing the classic linear model of the economy
(makeeuseethrow) to a much effective circular model
[1]. Specifically, the circulation of bio-waste for the

development of products with the high added value
might be the future alternative to fulfill the dream of a
bio-based circular economy [2,3].

Biorefineries were designed as an eco-friendly way to
produce marketable bio-based products (food and feed
ingredients, chemicals, and materials) [4], biofuels
(bioethanol, biodiesel, and biobutanol) [5], and biogas
[6,7] from biomass, especially organic wastes as renew-
able sources of energy. Evolution to third-generation
biorefineries or “advanced biorefineries” has been
achieved thanks to the innovation on bioconversion and

modern enzyme technology being the future of bio-
processing sectors as well as to integration between
science, technology, and public politics.

Different types of wastes, such as organic wastes fraction
from municipal sites, agri-food wastes, or crops, can be
transformed into valuable products [6]. Agro-industrial
wastes are mainly composed of cellulose and hemicellu-
lose that are held together by heteropolymeric lignin units,
and bioconversion could be achieved more efficiently by
lignocellulolytic secreting fungal andbacterial enzymes than

physical and chemical processes [8]. Other compounds,
such as reducing sugars, proteins, minerals, bioactive mol-
ecules, could be successfully obtained before lignocellulosic
transformation using cocktails of enzymes [9,10].

A advances in metabolic engineering, multi-omics plat-
forms (genomics, transcriptomics, proteomics, and
secretomics), integrated with bioinformatic screening
are the key to discover new enzymes and improve their
activity. Also, studies on metatranscriptomic analysis of
somemicrobial communities are useful to transform local

agri-food wastes optimizing time and resources [11,12].
On the other hand, the use of nanotechnology is also
useful to improve enzyme immobilization with nano-
materials reducing the cost of enzymes and increasing
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the enzyme application in the circular economy models
[5].

Agri-food waste potential
Nowadays, there is a need to focus on advanced
technologies as well as alternative devices for efficient
and effective utilization of fibrous parts or noncon-
sumable biomolecules from plant or animal sources
[13]. Designing a biorefinery begins with the identi-
fication and characterization of the waste available for
transformation, including the evaluation of the

regional availability, quantities, and allied producers. It
is also important to classify the waste into high-value-
added components and to evaluate the recovery,
extraction, or transformation stages with available
technologies [14e16].

Agriculture, livestock production, and the processing
agro-industry are significant sources of biomass wastes in
developing countries. Enzymatic transformation of
these wastes is the way to revalorize them as energy
sources while reducing their environmental impacts.

Some wastes that can serve as a platform to boost the
bioeconomy in agro-industrial countries are presented in
the following:

Coffee
As the most consumed beverage in the world, large
amounts of wastes such as peel, pulp, parchment,
silverskin, and spent ground coffee are generated.
Coffee peel is a source of bioactive compounds and
lignocellulosic material that can be used as a substrate to
produce enzymes such as xylanases, cellulases, pecti-

nases, among others [11]. The pulp is rich in fiber and
has high contents of proteins, sugars, minerals (partic-
ularly potassium), tannins, and caffeine. These wastes
can be transformed by enzymatic hydrolysis to obtain
chlorogenic acids, sugars, oligosaccharides, or alcohol
[17e23].

Cocoa
The main by-product of the cocoa industry is cocoa pod
husk (CPH) [24]. CPH is rich in methylxanthines, such
as caffeine and theobromine, and high levels of indi-

gestible fiber, which limits its use. Some studies suggest
the production of bioethanol production through
fermentation using Z. mobilis [25]. CPH was recently
explored to produce propionic acid through an alkaline
enzymatic treatment [26]. An optimal process for the
recovery of pectin and xylo-oligosaccharides (XOS) and
enzymatic hydrolysis of the cellulosic fraction, to recover
glucose and xylose, is also documented [27].

Pineapple
Cultivation is mainly concentrated in America and Asia,

mainly in Costa Rica, the Philippines, Brazil, China, and
Colombia [28]. The processing step generates a series of
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wastes such as crown, stem, cylinder, leaves, and
pomace. It has been reported to contain many bioactive
compounds such as phenolic acids, ascorbic acid, b-
carotenes, and flavonoids, as well as dietary fiber and
enzymes [29]. Pineapple residues can be used as an
economic raw material for the production of phenolic
compounds and fiber and as a substrate susceptible to
fermentation for the production of ethanol and organic

acids [30,31].

Banana
Their wastes are still a challenge for their application in
biorefineries; however, these residues have different
potential applications such as the production of energy,
bioethanol, biodiesel, hydrogen, and organic acids [32e
34]. The main residues are banana leaves, pseudostem,
empty fruit bunch, and peel. Few studies have focused
on the enzymatic potential of these substrates; however,
their capacity for the production of pectinases and

xylanases [35], a-amylases [36], and ɣ laccases [37] has
been explored.

Bovine bones
Beef production systems are quite diverse worldwide, as
they are the result of the combination of local environ-
mental characteristics, culture, and economies [38].
Meat processing in slaughterhouses, sausage factories, or
butchers includes operations of breeding, fattening,
slaughtering, cutting, cutting, refrigeration, and
freezing. These processes generate heads, legs, and

bones, which either are used for animal feed or are
simply discarded or incinerated, generating bad smells
and environmental problems [39]. Proteases are bio-
catalysts that allow the hydrolysis of proteins and can
have applications in different industries: cosmetic,
pharmaceutical, textile, and food [40,41]. Proteases and
lipases hydrolysate large amounts of food waste such as
bovine bones, wheat bran, and shrimp wastes [10,41].
These enzymes can be produced from extremely halo-
philic eubacteria, among others [10].

Enzymatic valorization of agro-industrial wastes to
obtain valuable compounds
Food wastes from agricultural production and
processing of crop and animal products can be enzy-
matically treated to obtain valuable products. Table 1
shows some examples: coffee peel hydrolyzed with
cellulases produces fiber for human and animal feed
[42], CPH treated with 2.3% (w/v) NaOH, and
cellulase produces sugars to obtain propionic acid

from Propionibacterium jensenii [26]. Other compounds
such as low-molecular-weight peptides from bovine
bone treated by ultrasound-assisted double enzyme
hydrolysis [39], lactulose with lactases on whey from
cheese industry [43], or ethanol by alkaline pre-
treatment and enzymatic hydrolysis of CPH [44] can
be produced.
www.sciencedirect.com
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Table 1

Valuable compounds from some agro-industrial wastes.

Waste material Valuable
compounds

Yield Treatment Potential uses Reference

Coffee peel Dietary fiber 13.96 ± 0.25% 0.2% cellulase at 50 �C and high
shear mixing emulsifier BME 100L,
Weiyu, Shanghai, China

Food industry
(functional
products)

[42]

Cocoa pod
husk (CPH)

Sugars to produce
propionic acid

275 mg glucose/CPH Alkaline (NaOH 2.3% w/v) and
enzymatic treatment [Cellic® CTec
2 (2.4% v/v)]

Food industry [26]

Bovine bone Low molecular
weight peptides
(LMWP)

21.04% 1. Pretreatment: 0.25 M EDTA
2. Primary extraction: 0.5 M Glacial
acetic acid – 1.5 × 104 U/g Pepsine
3. Neutral protease hydrolysis
(12.5 × 104 U/g)
4. Ultrasound-assisted protease
hydrolysis

Health and
cosmetics industry
(antioxidant)

[39]

Cocoa husk Ethanol 18.06 g/L Alkaline pretreatment (NaOH 5%)
and enzymatic hydrolysis (Cellic
Ctec2 151 FPU/mL)

Energy industry [44]

Banana
pseudostem (BP)

Laccase
Xylanase
Endoglucanase

0.5 U/mg protein
1.2 U/mg protein
3.0 U/mg protein

Bacillus wakoensis (pH: 8.0; T:
45 �C; 28 days)

Chemical industry
Environmental
uses

[37]

Whey Lactulose 0.028 mol/L
0.026 mol/L

Enzeco® (1.4 mkat/Kg)
Lactozym® (1.4 mkat/Kg)

Food industry
(prebiotics)

[43]
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Some of these residues are an important source of an-
tioxidants (cacao and coffee by-products), and they
must be previously extracted by green technologies such
as pressurized liquid extraction (PLE) or subcritical
water extractions (SWE), among others [45]. These
procedures can be performed before the application of
alkaline, acid, or enzymatic treatments of lignocellulosic
residues to close production cycles. Enzymatic pro-
cesses could be enhanced by mixing them with methods
such as alkaline treatments [26], shear mixing emulsi-
fiers [42] or ultrasound [44].

Another way to transform the agri-food wastes is via
aerobic or anaerobic microbial process from fungal or
bacterial cultures [5,8]. The macronutrients present in
food waste can replace the generally expensive carbon
and nitrogen sources used in the enzyme production
industry [10]. Enzymes are one of the most interesting
high-value-added biologics. Food waste serves as a sub-
strate for various microorganisms to produce enzymes,
usually under solid-state fermentation (SSF). Microor-
ganisms such as Saccharomyces cerevisiae and Bacillus sp.
can degrade the polymers of plant material through
enzymatic metabolism [46]. The most important en-
zymes for the biorefinery process are hydrolytic enzymes
such as amylases, pectinases, proteases, lipases, or
lignocellulolytic enzymes such as xylanases, cellulases,
and laccases. Although hemicellulose and lignin are
unpredictable biopolymers that cannot be effectively
degraded by bacteria, an analysis to identify potential
banana pseudostem (BP) wasteedegrading bacteria
with lignocellulolytic genes and their metabolic profile
www.sciencedirect.com C
was performed and showed that laccase, xylanase, and
endoglucanase were produced with strains of Bacillus
wakoensis isolated from BP wastes [43]. Other reports
have shown the production of protease-type enzymes for
the treatment of slaughterhouse effluent by the action
of Chromobacterium violaceum [47]. Filamentous fungi
have the ability to degrade a heterogeneity of substrates
and absorb substances in quantities greater than other
organisms [48]. In that way, fungi are the best enzyme
producers over plant and animal tissues, for example,
the production of enzymatic cocktails composed of

cellulase, xylanase, and b-glucosides in synergy with
Aspergillus tubingensis and Trichoderma reesei from palm
lignocellulosic waste [49].

Transcriptomic and proteomic analyses of the basidio-
mycetous fungus Ganoderma lucidum in the absence or
presence of Cu2þ predicted 194 transcript coding for
oxidoreductases and 402 transcripts for carbohydrate-
active enzymes (CAZy) thanks to the advent of geno-
mics and next-generation sequencing (NGS) tech-
niques. On the other hand, secretome studies revealed

higher secretion of laccases, cellulases, and xylanases.
Most of these enzymes are useful for biomass utilization,
fiber bleaching, and organo-pollutant degradation [10].

Another important application of agri-food wastes is the
extraction of enzymes such as pectinolytic and proteo-
lytic enzymes from pineapple, orange, lemon, or grape
peels; tanases from grapefruit and cherry peels; lipases
from lemon peel, coconut, and soy waste; invertases
from banana and orange peels, coconut, and
urrent Opinion in Green and Sustainable Chemistry 2022, 34:100585
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pomegranate; and peroxidases from asparagus, broccoli,
and radishes [16].

Importance of multi-omics platforms and metabolic
engineering in the edge of bioeconomy
Finding new uses and compounds from different waste
materials depends on the application of disruptive
technologies to discover microorganism, genes, or en-
zymes able to transform waste polymerebased. For
example, the NGS techniques, such as Roche 454,
Illumina Solexa GA, and SOLiD, has provided a platform

for discovering novel genes and understanding differ-
ential gene expression of key organism such as fungi, the
best enzyme producers [11,50]. Examples of this kind of
studies are de novo transcriptome assembly, differential
gene expression analysis, and proteome profiling of
G. lucidum showing the main lignocellulosic enzymes
involved on lignocellulose metabolism in copper-
contaminated environments [11].

The transcriptomic approach, for example, makes it
possible to identify inhibitors and expression levels of

enzymes involved in succinic acid production [51]. The
extraction of fiber from residues of Agave lechuguilla, in a
transcriptomic study, allowed the determination of the
composition of flavonoid identifying the genes involved
in their biosynthesis [52].

On the other hand, the production of valuable by-
products through microbial conversion of agri-food
wastes may be considerably improved by metabolic en-
gineering of the relevant microorganisms. The trans-
formation of urban organic wastes can be achieved by

analyzing the metabolic fluxes and the regulation of the
expression of genes coding specific anabolic enzymes
[53]. Metabolically engineered strains can be obtained
by traditional metabolic engineering approach or
multiplex-pathway optimization techniques such as
CRISPR/cas9 and multiplex automated genome engi-
neering as advanced tools to modulate and optimize the
expression of multiple genes [8,54].

Some applications are the thermostable recombinant
endoxylanase of Cryptococcus flavescens, expressed in Pichia
pastoris GS115 using the vector pGAPZaA to produce
the prebiotic compounds xylobiose, and xylotriose
(xylooligosaccharides, XOS), from the sugarcane
waste [55]. Another example of recombinant enzymes is
the use of a hyperthermostable keratinase, expressed in
E. coli for the efficient treatment of chicken feather
waste [56].
Enzymes availability after COVID-19
As stated by Business Communication Company (BCC)
Research, by 2023, the global market for enzymes could
reach $7 billion. The production of enzymes involved in
the leather, paper, textile, and biofuel industries is
Current Opinion in Green and Sustainable Chemistry 2022, 34:100585
expected to increase [57,58]. The most important
enzyme producers worldwide are BASF SE, Novozymes,
DuPont Danisco, DSM, NOVUS International, Associ-
ated British Foods Plc, Advanced Enzyme Technologies,
Chr Hansen Holding A/S, Lesaffre, Adisseo, Enzyme
Development Corporation, Aumgene Biosciences,
Megazyme, Enzyme Supplies, Creative Enzymes,
Enzyme Solutions, Enzymatic Deinking Technologies,

Biocatalysts, Sunson Industry Group, Metgen, Deny-
kem, and Tex Biosciences [59]. Developing countries
with large amounts of waste material and high biodi-
versity potential that suffered the negative impact after
the COVID-19 pandemic have in their hands the way to
recover their economies throughout the use of different
kinds of wastes to produce high valuable compounds.
One economical way to develop these processes could
be supported on an enzyme technology platform from in
house production by fungi or waste extraction among
others. The shortage of inputs, including enzymes pro-

duced by large producers and delays in transport
generated in the first months of the pandemic, taught us
that the best way to activate the processes is from a
reactivation of local production. In this sense, disci-
plines such as microbiology, biochemistry, and engi-
neering must be aligned to give rise to innovative
processes in the sector that meet the quality standards
of emerging markets.
Conclusions and perspectives
The integration of enzymatic technology with the
classic processes of physicochemical transformation of
agro-industrial waste following the 5R philosophy d
reduce, reuse, recycle, recovery, and restore d will
continue to be a key step to increase the supply of
nonenergy products such as prebiotics, organic acids,
and low-molecular-weight peptides with high added

value for the pharmaceutical, cosmetic, and food in-
dustries. Similarly, thanks to advances in nanotech-
nology, metabolic engineering, and multi-omics
platforms, it is possible to maximize the valorization of
both biomass and microbial communities associated
with the different sources of waste, enhancing the
resources of developing countries. The agro-industrial
countries have the possibility to recover their econo-
mies and mitigate the impacts generated by the
COVID-19 pandemic through the development of
production platforms based on the use of biomass from

cacao, banana, coffee, or animal by-products to obtain
high-value-added molecules, especially if these de-
velopments are achieved from of enzymatic methods.
Consumer trends aimed at the use of ingredients and
natural products of a sustainable nature increase the
demand for these products, so implementing cutting-
edge technologies based on the development of new,
resistant, and high-performance enzymes continues to
be a challenge for a company from developing
economy.
www.sciencedirect.com
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