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ABSTRACT
The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and
other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm,
and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cy-
cle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize
fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglyc-
erol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored
in lipid droplets and membrane structures, or secreted into the circulation as very low-density
lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis
and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for
endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in re-
lease of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria
though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic
tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The
sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluco-
neogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and
glucagon counteracts insulin action. Numerous transcription factors and coactivators, including
CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes
which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aber-
rant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty
liver diseases. C© 2014 American Physiological Society. Compr Physiol 4:177-197, 2014.

Introduction
The liver is a key metabolic organ and governs body energy
metabolism. It acts as a hub to metabolically connect various
tissues, including skeletal muscle and adipose tissue. Food
is digested in the gastrointestinal (GI) tract, and glucose, and
amino acids are absorbed into the bloodstream and trans-
ported to the liver through the portal vein circulation system.
In the postprandial state, glucose is condensed into glycogen
and/or converted into fatty acids in the liver. In hepatocytes,
fatty acids are esterified with glycerol-3-phosphate to gen-
erate triacylglycerol (TAG). TAG is stored in lipid droplets
(LDs) within hepatocytes and/or secreted into the circulation
as very low-density lipoprotein (VLDL) particles. Amino
acids are metabolized to provide energy or used to synthesize
proteins, glucose, and/or other bioactive molecules. In the
fasted state or during exercise, fuel substrates (e.g., glucose
and TAG) are released from the liver into the circulation and
metabolized by muscle, adipose tissue, and other extrahepatic
tissues, whereas adipose tissue releases nonesterified fatty
acids (NEFAs) and glycerol via lipolysis. Muscle breaks
down glycogen and proteins and releases lactate and alanine.
Alanine, lactate, and glycerol are delivered to the liver and
used as precursors to synthesize glucose via gluconeogenesis.
NEFAs are oxidized in hepatic mitochondria through fatty
acid β-oxidation and generate ketone bodies (ketogenesis).
Liver-generated glucose and ketone bodies provide essential

metabolic fuels for extrahepatic tissues during starvation and
exercise.

Multiple nutrient, hormonal, and neuronal signals have
been identified to regulate glucose, lipid, and amino acid
metabolism in the liver. Dysfunction of liver signal trans-
duction and nutrient metabolism causes or predisposes to a
variety of diseases, including nonalcoholic fatty liver disease
(NAFLD) and type 2 diabetes.

Liver Glucose Metabolism
In the liver, blood glucose enters hepatocytes via GLUT2,
a plasma membrane glucose transporter. Hepatocyte-specific
deletion of GLUT2 blocks hepatocyte glucose uptake (241).
GLUT2 also mediates glucose release from the liver; how-
ever, deletion of GLUT2 does not affect hepatic glucose pro-
duction (HGP) in the fasted state (241), suggesting that glu-
cose is able be released from hepatocytes through additional
transporters (e.g., GLUT1). Glucose is phosphorylated by
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Figure 1 Glucose metabolic pathways. The gluconeogenic path-
ways are marked in blue, and the pentose phosphate pathways
are marked in orange. GCK: glucokinase; G6Pase: glucose-6-
phosphatase; G6P: glucose 1-phosphate; G1P: glucose 1-phosphate;
GP: glycogen phosphorylase; GS: glycogen synthase; PFK: 6-
phosphofructo-1 kinase; FBPase: fructose 1,6 bisphosphatase; F-1,6-
P:; GAP: glyceraldehyde 3-phosphate; DHAP: dihydroxyacetone phos-
phate; L-PK: liver pyruvate kinase; PC: pyruvate carboxylase; PDC:
pyruvate dehydrogenase complex; and PDKs: pyruvate dehydrogenase
kinases.

glucokinase (GCK) in hepatocytes to generate glucose 6-
phosphate (G6P), which lowers intracellular glucose concen-
trations and further increases glucose uptake (Fig. 1). More-
over, G6P is unable to be transported by glucose transporters,
so it is retained within hepatocytes. In the fed state, G6P
acts as a precursor for glycogen synthesis (Fig. 1). It is also
metabolized to generate pyruvate through glycolysis. Pyru-
vate is channeled into the mitochondria and completely oxi-
dized to generate ATP through the tricarboxylic acid (TCA)
cycle and oxidative phosphorylation (Fig. 1). Alternatively,

pyruvate is used to synthesize fatty acids through lipogenesis
(Fig. 3). G6P is also metabolized to generate NADPH via
the pentose phosphate pathway (Fig. 1). NADPH is required
for lipogenesis as well as for the biosynthesis of other bioac-
tive molecules. In the fasted state, G6P is transported into
the endoplasmic reticulum (ER) and dephosphorylated by
glucose-6-phosphatase (G6Pase) to release glucose.

Glycogen metabolism
In the fed state, glucose enters hepatocytes via GLUT2 and
is phosphorylated by GCK to produce G6P. G6P is used to
synthesize glycogen by glycogen synthase (4). In the fasted
state, glycogen is hydrolyzed by glycogen phosphorylase to
generate glucose (glycogenolysis) (Fig. 1). G6P is not only
an allosteric inhibitor of glycogen phosphorylase but also
an allosteric activator of glycogen synthase, thus increas-
ing liver glycogen levels (4). The activity of both glyco-
gen synthase and glycogen phosphorylase is regulated by
posttranslational modifications. Phosphorylation of glycogen
synthase, mainly by glycogen synthase kinase 3 (GSK-3),
inhibits glycogen synthase activity; in contrast, phosphory-
lation of glycogen phosphorylase increases its activity. Both
glycogen synthase and glycogen phosphorylase are able to be
dephosphorylated by protein phosphatase 1. In the fed state,
pancreatic β-cells secret insulin in response to an increase in
blood glucose, amino acids, and/or fatty acids. Insulin stimu-
lates glycogen synthase by activating Akt which phosphory-
lates and inactivates GSK-3, thus increasing glycogen synthe-
sis. Insulin stimulates acetylation of glycogen phosphorylase,
which promotes dephosphorylation and inhibition of glyco-
gen phosphorylase by protein phosphatase 1, thus suppress-
ing glycogenolysis (299). Insulin stimulates the expression
of GCK which phosphorylates glucose and increases hepa-
tocyte glucose uptake by lowering intracellular free glucose
levels (4). In the postprandial period, the GI secretes fibroblast
growth factor 15/19 (FGF15/19) which also stimulates glyco-
gen synthesis (118). FGF15/19 stimulates the ERK/RSK path-
way by activating its receptor FGFR4 and β-klotho, and RSK
phosphorylates and inactivates GSK-3, a negative regulator
of glycogen synthase (118).

In the fasted state, insulin and FGF15/19 secretion is
downregulated, leading to inhibition of glycogen synthase and
activation of glycogen phosphorylase. Moreover, glucagon
and catecholamines (e.g., epinephrine and norepinephrine),
collectively called counterregulatory hormones, are secreted
from pancreatic α-cells and the adrenal medulla, respec-
tively. These counterregulatory hormones bind to their cog-
nate G protein-coupled receptors and activate protein kinase
A (PKA) by increasing intracellular cAMP levels. PKA phos-
phorylates and activates glycogen phosphorylase directly
or indirectly by phosphorylating and activating phospho-
rylase kinases. Glucagon inhibits acetylation of glycogen
phosphorylase, which decreases the ability of protein phos-
phatase 1 to bind to, dephosphorylate, and inactivate glycogen
phosphorylase (299). Glycogen is also able to be hydrolyzed
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to generate glucose through autophagy in the fasted
state (122).

Gluconeogenesis
The liver produces glucose mainly through glycogenolysis in
short-term fasting. During prolonged fasting, hepatic glyco-
gen is depleted, and hepatocytes synthesize glucose through
gluconeogenesis using lactate, pyruvate, glycerol, and amino
acids as precursors (Fig. 1). Gluconeogenic substrates are
either generated within the liver or delivered to the liver from
extrahepatic tissues through the circulation. Lactate is oxi-
dized by lactate dehydrogenase to generate pyruvate. Pyru-
vate is transported into the mitochondria and converted to
oxaloacetate by pyruvate carboxylase (PC) (Fig. 1). Oxaloac-
etate is reduced to malate by mitochondrial malate dehy-
drogenase, and malate is exported into the cytoplasm and
oxidized by cytoplasmic malate dehydrogenase to regener-
ate oxaloacetate. Cytoplasmic oxaloacetate is converted to
phosphoenolpyruvate by cytoplasmic phosphoenolpyruvate
carboxylase (PEPCK-C), a key step of gluconeogenesis. Sys-
temic deletion of PEPCK-C causes postnatal death within
3 days after birth (243). Mice with hepatocyte-specific dele-
tion of PEPCK-C are viable, but their livers are unable to
produce glucose from lactate and amino acids via gluconeo-
genesis, leading to accumulation of TCA cycle intermediates
in hepatocytes and hepatic steatosis in the fasted state (21).
However, liver-specific PEPCK-C knockout mice are able to
generate glucose from glycerol and maintain relatively nor-
mal blood glucose levels after 24 h of fasting (21, 243).
Phosphoenolpyruvate, after multiple biochemical reactions,
is converted into fructose 1,6-biphosphate (F1,6P) which is
dephosphorylated by fructose 1,6 bisphosphatase (FBPase)
to generate fructose-6-phosphate (F6P). F6P is converted
to G6P, transported into the ER, and dephosphorylated by
G6Pase to generate glucose. Dephosphorylation of G6P is the
rate-limiting step for both glycogenolysis and gluconeogene-
sis. Mice with hepatocyte-specific deletion of G6Pase (which
encodes the catalytic subunit) develop hyperlipidemia, lactic
acidosis, uricemia, and hepatomegaly with glycogen accu-
mulation and hepatic steatosis (183). Glycerol enters into
hepatocytes via aquaporin-9 and is phosphorylated by glyc-
erol kinase to generate glycerate-3 phosphate, a precursor
for gluconeogenesis (98). Amino acids are converted to α-
ketoacids through deamination reactions catalyzed by glu-
taminase, glutamate dehydrogenase, and/or aminotransferase.
The α-ketoacids are further converted to TCA cycle interme-
diates (e.g., pyruvate, oxaloacetate, fumarate, and succinyl-
CoA, or α-ketoglutarate) which serve as gluconeogenic pre-
cursors.

Gluconeogenesis is regulated by the availability
of gluconeogenic substrates

The rate of gluconeogenesis is determined by both the
availability of gluconeogenic substrates and the expression/

activation of gluconeogenic enzymes (e.g., PEPCK-C and
G6Pase) (Fig. 1). During exercise or fasting, skeletal mus-
cles produce pyruvate through glycogenolysis and glycol-
ysis. Pyruvate has two fates. It can be catabolized to pro-
duce acetyl-CoA by mitochondrial pyruvate dehydrogenase
complex (PDC), and acetyl-CoA is then completely oxidized
through the TCA cycle (Fig. 1). Alternatively, pyruvate is con-
verted into lactate which is released into the circulation and
utilized by hepatocytes to produce glucose through gluco-
neogenesis. PDC is phosphorylated and inactivated by pyru-
vate dehydrogenase kinases (PDKs, four isoforms) (Fig. 1),
and dephosphorylated and activated by pyruvate dehydroge-
nase phosphatases (99). PDK2 and PDK4 levels are higher
in the fasted state and in diabetes (99). Deletion of PDK4
increases PDC activity, which allows pyruvate to be chan-
neled to the TCA cycle for complete oxidation (101). As a
result, pyruvate is not available for gluconeogenesis, lead-
ing to hypoglycemia in fasted PDK4 knockout mice (101).
Glycerol, which is released from adipose tissue through
lipolysis, is also a gluconeogenic substrate. Fatty acid β-
oxidation is unable to produce gluconeogenic substrates, but
it does generate ATP which is required for gluconeogene-
sis. Prolonged starvation leads to protein degradation and
release of amino acids, which are important gluconeogenic
substrates.

Gluconeogenesis is regulated by the activation
of gluconeogenic enzymes

Gluconeogenic enzyme activity is regulated by posttransla-
tional modifications and/or allosteric regulation. Most liver
enzymes, which regulate glycolysis, gluconeogenesis, the
TCA cycle, the urea cycle, and fatty acid and glycogen
metabolism, are acetylated, and acetylation levels are regu-
lated by nutrient availability (303). Glucose stimulates acety-
lation of PEPCK-C by p300, which promotes PEPCK-C
ubiquitination and degradation (103); in contrast, cytosolic
SIRT2 deacetylates and stabilizes PEPCK-C in the fasted
state (103). Fructose-2,6-bisphosphate (F-2,6-P2), which is
derived from G6P (Fig. 1), binds to FBPase and inhibits its
catalytic activity, thus inhibiting gluconeogenesis in the fed
state (225).

Gluconeogenesis is controlled by multiple
transcription factors and coregulators

Hepatic gluconeogenesis is controlled largely through tran-
scriptional regulation of the enzymes which catalyze the key
reactions of gluconeogenesis. Numerous transcription factors,
including CREB, FOXO1, and C/EBPα/β, have been iden-
tified to stimulate the expression of PEPCK-C and G6Pase.
CREB is a well-documented gluconeogenic transcription fac-
tor which is activated by PKA-mediated phosphorylation,
and it stimulates the expression of PEPCK-C, G6Pase, and
peroxisome proliferator γ-activated receptor coactivator 1-α
(PGC-1α) (81). Inhibition of liver CREB, by liver-specific,
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transgenic overexpression of a dominant negative form of
CREB, decreases the expression of PEPCK-C, G6Pase, and
PGC-1α, leading to reduced HGP and hypoglycemia (81).
Knockdown of CREB in the liver reduces HGP in rodents with
type 2 diabetes (56). Hepatocyte-specific deletion of FOXO1
decreases both glycogenolysis and gluconeogenesis in fasted
mice, leading to hypoglycemia (166). Deletion of C/EBPα

also decreases gluconeogenesis, and the mutant mice die from
hypoglycemia within 8 h after birth (271). C/EBPα stimulates
the expression of carbamoyl phosphate synthetase-1 (CPS-1)
which controls the rate-limiting reaction of the urea cycle;
therefore, C/EBPα is able to increase production of gluco-
neogenic substrates by promoting amino acid catabolism (95,
117). However, hepatocyte-specific deletion of C/EBPα does
not affect the expression of PEPCK-C and G6Pase, and the
mutant mice have normal blood glucose levels (95). These
observations suggest that other C/EBP family members may
have a compensatory function in the mutant mice, and indeed,
deletion of C/EBPβ decreases HGP and blood glucose levels
in mice (152).

Several coactivators have been described to stimulate
the expression of PEPCK-C and G6Pase in the liver. Both
p300/CBP and cAMP-regulated transcriptional coactivator 2
(CRTC2) binds to CREB and stimulate the expression of
PEPCK-C and G6Pase, thus increasing hepatic gluconeno-
genesis (121, 306). Systemic deletion of CRTC2 impairs
both the expression of liver gluconeogenic genes and the
ability of glucagon to stimulate glucose production in hep-
atocytes (130, 274). PGC-1α is higher in the fasted state
and in diabetes (81, 294), and it promotes gluconeogenesis
by coactivating HNF-4α (294). Steroid receptor coactivator-
1 (SRC-1) coactivates C/EBPα and promotes expression
of PC and other gluconeogenic genes, and deletion of
SRC-1 results in hypoglycemia (157). SRC-2 stimulates
G6Pase promoter activity by coactivating retinoid-related
orphan receptor α, and genetic deletion of SRC-2 results
in decreased G6Pase expression and hypoglycemia in fasted
mice (38).

Gluconeogenesis is regulated by hepatic
metabolic states and the circadian clock
The fasting, low-energy states are associated with activa-
tion of both SIRT and AMPK family members, whereas
the high energy states are associated with mTORC1 acti-
vation. SIRT, AMPK, and mTORC1 are considered molecu-
lar energy sensors. Many gluconeogenic transcriptional reg-
ulators are substrates of SIRT1, AMPK, and/or TORC1.
PGC-1α is acetylated by GCN5, and acetylation decreases
the ability of PGC-1α to activate gluconenogenic genes
(141). SIRT1 deacetylates PGC-1α, thus increasing its abil-
ity to coactivate HNF-4α for gluconeogenesis (226). Knock-
down of SIRT1 in the liver decreases hepatic gluconeoge-
nesis in mice with obesity (57, 227). Surprisingly, mice
with hepatocyte-specific deletion of SIRT1 appear to be

able to maintain relatively normal blood glucose levels
(32, 280). Hepatic gluconeogenesis is even higher in these
mice (273). In addition to deacetylating PGC-1α, SIRT1
also deacetylates CRTC2 during prolonged fasting, leading
to degradation of CRTC2 and decreased gluconeogenesis
(154). Both SIRT3 and SIRT5 are located in the mitochon-
dria, and their activity is higher in the fasted state (75, 188).
SIRT3 deacetylates and activates ornithine transcarbmoylase,
a key enzyme of the urea cycle (75). SIRT5 deacetylates and
activates CPS-1 (188). Mitochondrial SIRT3 and SIRT5 are
able to increase gluconeogenic substrate availability and hep-
atic gluconeogenesis during starvation by stimulating amino
acid catabolism. The LKB1/AMP pathway suppresses HGP.
Liver-specific deletion of LKB1 increases hepatic gluconeo-
genesis and blood glucose levels (242), and genetic deletion of
AMPKα2 in the liver also increases hepatic gluconeogenesis
and glucose intolerance (5). AMPK phosphorylates CRTC2
and blocks nuclear translocation of CRTC2, thus inhibiting
the ability of CRTC2 to promote hepatic gluconeogenesis
(121). S6 kinase, a downstream effector of mTORC1, phos-
phorylates PGC-1α and inhibits its ability to bind to HNF-4α,
thus inhibiting gluconeogenesis (160).

Circadian clock genes have been reported to regulate hep-
atic gluconeogenesis. Cryptochrome 1 (Cry1) and Cry2 bind
to and inhibit glucocorticoid receptors (GRs) (128). Glucocor-
ticoids are important counterregulatory hormones and stimu-
late hepatic gluconeogenesis. Cry1 also inhibits the ability of
glucagon, another important counterregulatory hormone, to
stimulate HGP by uncoupling glucagon receptors from G α

(297). Ubiquitin-specific protease 2 is a clock-regulated gene
in the liver, and it increases hepatic gluconeogenesis by stim-
ulating the expression of 11-hydroxysteroid dehydrogenase 1
(HSD1) (176). HSD1 converts inactive glucocorticoids into
active forms.

Regulation of gluconeogenesis by the ER
The ER is able to regulate hepatic gluconeogenesis either
positively or negatively depending on the cellular context
and the nature of downstream signaling pathways. CREBH
is an ER-membrane protein, and its levels are higher in the
fasted state (135). CREBH binds to CRTC2 and promotes
the expression of gluconeogenic genes, including PEPCK-C
and G6Pase (135). ER stress activates the unfolded protein
response (UPR). Three UPR pathways, the protein kinase-
like ER kinase (PERK)/elF2α, the inositol-requiring enzyme
1 (IRE1)/XBP1, and the ATF6 pathways, have been exten-
sively characterized (107). The PERK/elF2α pathway stimu-
lates HGP by increasing translation of C/EBPα and C/EBPβ

(200). In contrast, XBP1 is able to bind to FOXO1 and tar-
get FoxO1 for degradation, thus inhibiting the hepatic glu-
coneogenesis (307). ATF6 binds to CRTC2 and inhibits the
expression of gluconeogenic genes by sequestering CRTC2
from CREB (276). Moreover, chronic activation of the UPR
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pathways promotes insulin resistance, thus indirectly increas-
ing HGP (107, 202).

Insulin suppresses hepatic gluconeogenesis
Insulin potently suppresses gluconeogenesis, and hepatocyte-
specific deletion of insulin receptors markedly increases
hepatic gluconeogenesis in mice, resulting in hyperglycemia
and glucose intolerance (173). Insulin resistance is a deter-
minant for the development of type 2 diabetes, and it also
contributes to the pathogenesis of NAFLD. Insulin receptors
bind to IRS1 and IRS2 and phosphorylate them on tyrosine
residues (233, 282). Hepatocyte growth factor receptor Met
is able to form a hybrid complex with insulin receptors in the
liver to promote insulin signaling (59). Tyrosine phosphory-
lated IRS proteins activate the PI 3-kinase/Akt pathway (233,
282). Liver-specific inhibition of either IRS1 or IRS2 alone
partially impairs insulin action; deletion of both IRS1 and IRS2
in the liver largely blocks hepatic insulin action, resulting in
increased hepatic gluconeogenesis, hyperglycemia, and type
2 diabetes (50, 51, 70). Insulin stimulates mTORC2, which
phosphorylates Akt at Ser473 and enhances Akt activity (96).
Mice with hepatocyte-specific deletion of rictor, an essential
component of the mTORC2 complex, have higher hepatic glu-
coneogenesis and develop hyperglycemia and insulin resis-
tance (74). Akt phosphorylates and inactivates FOXO1 in the
liver, thus suppressing gluconeogenesis (Fig. 3A) (71, 73, 166,
187, 214, 298). In contrast, MAPK phosphatase-3 dephospho-
rylates FOXO1 at pSer256 and promotes nuclear transloca-
tion of FOXO1, which activates gluconeogenic genes and
increases hyperglycemia (286). FOXO1 is acetylated on mul-
tiple sites by p300/CBP, and acetylation decreases the ability
of FOXO1 to bind to the promoters of its target genes (170).
FOXO1 interacts with C/EBPα, and these two proteins act
cooperatively to promote gluconeogenesis (239). Wnt ligands
in the liver are higher in the fasted state, and they increase the
expression of PEPCK-C and G6Pase by stimulating the bind-
ing of β-catenin to FOXO1; deletion of β-catenin impairs
HGP (151).

In addition to FOXO1, insulin also stimulates phosphory-
lation of FOXO3, FOXO4, and FOXO6 by Akt and inhibits
their ability to stimulate hepatic gluconeogenesis (73, 111,
298). Insulin stimulates phosphorylation of PGC-1α by Akt
and decreases the ability of PGC-1α to activate gluconeogenic
genes (Fig. 2A) (146). Insulin still suppresses HGP in mice
with liver-specific triple knockout of Akt1, Akt2, and FoxO1
(158), suggesting that insulin is able to suppress HGP by
Akt1/2/FOXO1-independent mechanisms. Insulin stimulates
activation of SIK2 which phosphorylates CRTC2 and pro-
motes cytoplasmic translocation and degradation of CRTC2,
thus suppressing gluconeogenesis in hepatocytes (Fig. 2A)
(47). Insulin also stimulates phosphorylation of CBP on Ser436

by atypical PKCι/λ, which disrupts the CREB/CBP/CRTC2
complex and inhibits gluconeogenesis (Fig. 2A) (78,
306); however, mice with liver-specific deletion of CBP
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Figure 2 Regulation of liver glucose and fatty acid metabolism by
insulin and glucagon.

have relatively normal insulin sensitivity, HGP, and blood
glucose (11).

Glucagon stimulates hepatic gluconeogenesis
Glucagon is secreted from pancreatic α-cells, and glucagon
secretion is higher in the fasted state and during exercise (278).
Destruction of pancreatic α-cells causes glucagon deficiency,
resulting in improved glucose tolerance and decreased glu-
coneogenic gene expression, HGP, and blood glucose in the
fasted state (76). Systemic deletion of glucagon receptors
decreases blood glucose levels and improves glucose toler-
ance (66, 205). Glucagon receptor knockout mice resist diet-
induced obesity, glucose intolerance, and hepatic steatosis
(40). Streptozotocin (STZ)-induced insulin deficiency is asso-
ciated with increased α-cell number and hyperglucagonemia,
and deletion of glucagon receptors decreases hepatic gluco-
neogenesis and fully rescues STZ-induced hyperglycemia and
glucose intolerance (137). Silencing of liver glucagon recep-
tors also reduces blood glucose and improves glucose toler-
ance in db/db mice and Zucker diabetic fatty rats (148, 248).
The glucagon receptor is a G protein-coupled receptor fam-
ily member and activates the Gα-cAMP-PKA pathway (102).
Liver-specific deletion of Gα results in glucagon resistance,
hypoglycemia, and reduced expression of gluconeogenic
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genes (34). PKA phosphorylates and activates CREB which
stimulates hepatic gluconeogenesis (Fig. 2B). CRTC2, a crit-
ical CREB coactivator, is phosphorylated by SIK2, and phos-
phorylated CRTC2 is then translocated from the nucleus to the
cytoplasm, ubiquitinated, and degraded (47). PKA promotes
dephosphorylation of CRTC2 and inhibits CRTC2 degrada-
tion (Fig. 2B) (154). PKA also phosphorylates and activates
inositol-1,4,5-triphosphate receptors (IP3Rs), thus increasing
the release of Ca2+ from the ER into the cytoplasm (Fig. 2B)
(275). Ca2+ activates calcineurin which in turn dephospho-
rylates and stabilizes CRTC2, thus promoting gluconeogen-
esis (275). Glucagon also stimulates acetylation of CRTC2
by p300/CBP, which increases both the stability and gluco-
neogenic activity of CRTC2 (154).

Aside from stimulating the CREB/CRTC2 pathway,
glucagon is able to stimulate gluconeogenesis through addi-
tional mechanisms. Glucagon stimulates Ca2+ release from
the ER in hepatocytes via PKA-mediated phosphorylation
of IP3R as described above. Ca2+ activates CaMKII which
in turn promotes nuclear translocation of FOXO1 (Fig. 2B)
(201). Hepatic gluconeogenesis is lower in CaMKIIγ null
mice, and liver-specific overexpression of CaMKII increases
gluconeogenesis (201). CaMKII activates p38 MAPK which
in turn increases nuclear translocation and activity of FOXO1
(201). Activation of the p38 MAPK pathway stimulates HGP
(26). FOXO1 is acetylated at multiple sites by p300/CBP,
which reduces its ability to bind to the promoters of its
target genes (170). Glucagon promotes deacetylation of
FOXO1 (174). Glucagon stimulates dephosphorylation and
nuclear translocation of HDAC4/5/7 which interact with both
HDAC3 and FOXO1 at the promoters of FOXO1 target genes
(Fig. 2B), thus allowing HDAC3 to deacetylate and activate
FOXO1 (174). Glucagon also stimulates phosphorylation of
IRE1α by PKA, and silencing of hepatic IRE1α impairs HGP
(163).

Regulation of gluconeogenesis by GH
and nuclear receptors
Growth hormone (GH) and glucocorticoids are important
counterregulatory hormones. GH stimulates the JAK2/STAT5
pathway (182). STAT5 directly binds to and stimulates the
PEPCK-C promoter (116). GH also stimulates the expres-
sion of PDK4 through STAT5 (115). PDK4 phosphorylates
PDC and inhibits PDC activity (100,101), which blocks TCA
cycle-mediated oxidation of pyruvate, thus channeling pyru-
vate to gluconeogenesis. The gluconeogenic action of GH is
negatively regulated by multiple factors, including bile acids
and fibroblast growth factor (FGF) 21. Bile acids activate
nuclear receptor farnesoid X receptor (FXR) which stimu-
lates the expression of SHP, a transcription repressor (259).
SHP in turn inhibits the ability of STAT5 to bind to PEPCK-C
and PDK4 promoters (115, 116), thus inhibiting hepatic glu-
coneogenesis. Liver-specific overexpression of constitutively
active FXR decreases blood glucose (301). FGF21 is largely
produced and secreted by hepatocytes (9, 91). It decreases

STAT5 levels and causes GH resistance in the liver in an
autocrine fashion, thus inhibiting GH-stimulated HGP (92).

The GR, a member of the nuclear receptor family, resides
primarily in the cytoplasm in quiescent cells in a complex
with chaperone heat shock protein (HSP) 90 and HSP70 and
cochaperone HSP40 and p23 (267). Ligand binding stim-
ulates nuclear translocation of GR, which activates gluco-
neogenic genes (283). Hepatocyte-specific deletion of GR
decreases both the expression of gluconeogenic genes and
blood glucose levels in the fasted state and protects against
STZ-induced hyperglycemia (199). Knockdown of GR in the
liver also inhibits the expression of gluconeogenic genes and
reduces hyperglycemia in db/db mice (139). HDAC6 deacety-
lates HSP90 and promotes GR-HSP90 complex assembly
(123), and deletion of HDAC6 blocks ligand-induced nuclear
translocation of GR and GR-stimulated expression of gluco-
neogenic genes PEPCK-C, G6Pase, FBPase, and PC in the
liver (283). Additionally, GR binds to STAT5 as a cofactor to
promote GH-stimulated gluconeogenesis (182). GR expres-
sion is upregulated in hepatocytes by transcription factor Yin
Yang 1 (YY1) which is elevated in the fasted state (159).
Knockdown of YY1 in the liver ameliorates hyperglycemia
in db/db mice (159). The liver X receptor (LXR), another
member of the nuclear receptor family which is activated by
oxysterols and controls cholesterol homeostasis (23), inhibits
the gluconeogenic action of GR by competing for GR binding
sites in the promoter of gluconeogenic genes (184). LXR acti-
vation also suppresses GR expression in hepatocytes (155).
Surprisingly, genetic deletion of LXRb has been reported to
impair the ability of GR to stimulate the expression of gluco-
neogenic genes and HGP (206).

Cytokines regulate hepatic gluconeogenesis
The liver houses many types of immune cells, including
Kupffer, NK, NKT, and CD4+ T cells (10, 142, 221).
These immune cells as well as hepatocytes secrete numer-
ous cytokines which regulate hepatocyte metabolism in an
autocrine/paracrine fashion. Insulin signaling in the hypotha-
lamus stimulates IL-6 production in the liver, and IL6 in turn
suppresses gluconeogenesis by activating STAT3 (93). STAT3
directly binds to the promoters of PEPCK-C and G6Pase and
inhibits promoter activity (219). Hepatocyte specific deletion
of STAT3 increases the expression of PEPCK-C, G6Pase, and
PGC-1α; conversely, liver-specific overexpression of a consti-
tutively active form of STAT3 decreases HGP and blood glu-
cose levels in diabetic mice (94). IL-13 also stimulates tyro-
sine phosphorylation of STAT3 in hepatocytes, and genetic
deletion of IL-13 increases hepatic gluconeogenesis (253). IL-
13 null mice develop hyperglycemia and glucose intolerance
(253). SIRT1 deacetylates STAT3 and inhibits tyrosine phos-
phorylation of STAT3, thus decreasing the ability of STAT3
to suppress HGP (191). However, chronic inflammation in the
liver causes insulin resistance, leading to increased HGP (85).
Liver inflammation also increases the ability of glucagon to
stimulate HGP (36, 244).
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GI hormones regulate hepatic gluconeogenesis
Several GI hormones, including glucagon-like peptide 1, have
been well established to regulate HGP by stimulating insulin
secretion. GI-derived factors are also able to act directly on
hepatocytes. Bile acids stimulate the expression and secre-
tion of FGF15/19 from small intestines by activating FXR
(90). Circulating FGF15/19 levels increase after food inges-
tion (211). FGF15/19 promotes dephosphorylation of CREB
and inhibits the ability of CREB to activate PGC-1α and
G6Pase genes, thus suppressing gluconeogenesis (211). Dele-
tion of FGF19 or its receptor FGFR4 increases gluconeoge-
nesis and blood glucose levels (211). Circulating serotonin
levels are lower in the fed state, and markedly increase dur-
ing chronic fasting due to increased secretion from the gut
(257). Serotonin directly increases gluconeogenesis in hep-
atocytes by activating Htr2b receptors (257). Gut-specific
deletion of tryptophan hydroxylate 1, which controls the
rate-limiting reaction of the serotonin biosynthesis in periph-
eral tissues, impairs gluconeogenesis and protects against
dietary glucose intolerance and insulin resistance (257).
Hepatocyte-specific deletion of Htr2b also decreases hepatic
gluconeogenesis (257).

Regulation of glycolysis
Hepatocytes have great flexibility in selecting metabolic fuels
(glucose and fatty acids). Fuel selection is regulated by both
nutrient and hormonal signals. Glycolysis is dominant in the
fed state in which glucose is abundant. Glycolytic interme-
diates are used to synthesize lipids, amino acids, and other
important molecules in addition to be completely oxidized to
generate ATP. In the fasted state with low levels of glucose,
hepatocytes switch to fatty acid β oxidation for energy supply.

The glycolytic flux is controlled largely by four kinases:
GCK, 6-phosphofructo-1 kinase (PFK), liver pyruvate kinase
(L-PK), and PDKs (Fig. 1). The levels and activity of these
glycolytic enzymes are lower in the fasted state and increase in
the postprandial period (112). LRH-1, a nuclear receptor fam-
ily member which is activated by several phosphatidylcholine
species (134), stimulates GCK expression, and hepatocyte-
specific deletion of LRH-1 decreases GCK levels and glycol-
ysis (198). GCK binds to GCK regulatory protein (GKRP) at
low glucose concentrations (4). GKRP, which is exclusively
expressed in the liver, inhibits GCK activity by sequestering
GCK in the nucleus (4). Glucose induces dissociation of GCK
from GKRP, allowing GCK to be translocated into the cyto-
plasm and phosphorylate glucose (4). F-2,6-P2 is a potent
allosteric activator of PFK and stimulates glycolysis in hep-
atocytes (225). F-2,6-P2 also suppresses gluconeogenesis by
inhibiting FBPase (225). Both the generation and clearance
of F-2,6-P2 is controlled by a single enzyme called bifunc-
tional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase
(PFK-2/FBP-2) (225). In the fed state, both insulin and
carbohydrates stimulate the kinase activity of PFK-2/FBP-
2 which phosphorylates fructose-6-phosphate, a glycolytic

intermediate, to generate F2,6P2 (197). In the fasted state,
glucagon stimulates the phosphatase activity of PFK-2/FBP-
2 by PKA-mediated phosphorylation, thereby decreasing
F2,6P2 levels and glycolysis (197, 225). Glucose activates
carbohydrate response element binding protein (ChREBP),
also called Williams-Beuren syndrome critical region 14
(WBSCR14) (265). ChREBP binds to the E-box motifs in
the L-PK promoter and activates L-PK expression in hepato-
cytes (290). Insulin suppresses the expression of PDK4 (Fig.
2A), a negative regulator of PDC and a FOXO1 target, thus
increasing pyruvate consumption and glycolysis (99).

Liver Fatty Acid Metabolism
When carbohydrates are abundant, the liver not only utilizes
glucose as the main metabolic fuel but also converts glucose
into fatty acids (de novo lipogenesis). Hepatocytes also obtain
fatty acids from the bloodstream, which are released from
adipose tissue or absorbed from digested food in the GI. Fatty
acids are esterified with glycerol 3-phosphate to generate TAG
(Fig. 3), or with cholesterol to produce cholesterol esters.
TAG and cholesterol esters are either stored in LDs within
hepatocytes or secreted into the circulation as VLDL particles.
Fatty acids are also incorporated into phospholipids, which
are essential components of cell membranes and the surface
layer of LDs, VLDL, and bile particles. In the fasted state,
fatty acids are oxidized mainly in the mitochondria to generate
ATP as well as ketone bodies.
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Figure 3 Lipogenic pathways. Lipogenic enzymes are marked in
blue. ACL: ATP-citrate lyase; ACC: acetyl-CoA carboxylase; FAS: fatty
acid synthase; Elovls: fatty acyl-CoA elongases; SCDs: stearoyl-CoA
desaturases; and TAG: triacylglycerol.
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Hepatocyte fatty acid uptake and trafficking
After a meal, dietary fat is digested mainly in the small
intestine and absorbed into enterocytes in which fatty acids
are resynthesized into TAG and secreted into the gut lym-
phatic system as chylomicrons. Chylomicrons release NEFAs
through lipolysis which is mainly catalyzed by lipoprotein
lipase (LPL). Transgenic mice with liver-specific overex-
pression of LPL develop hepatic steatosis and insulin resis-
tance (114). Hepatic CREBH stimulates the expressing of
LPL coactivators (e.g., Apoa4, Apoa5, and Apoc2) and sup-
presses the expression of LPL inhibitor Apoc3, thus promot-
ing plasma TAG clearance from the circulation (132).

NEFAs enter into hepatocytes through CD36, fatty acid
transport protein 2 (FATP2), FATP4, and FATP5. Pregnane X
receptor (PXR) activates the expression of CD36 in hepato-
cytes, increasing hepatocyte fatty acid uptake and TAG levels
(305). Aryl hydrocarbon receptor activation also increases
hepatocyte CD36 expression, fatty acid uptake, and steato-
sis (133). FATP5 is exclusively expressed in the liver, and
deletion of FATP5 decreases hepatocyte fatty acid uptake
and lipid levels in FATP5 null mice (49). FATP2 also medi-
ates liver fatty acid uptake, and knockdown of FATP2 in
the liver decreases NEFA uptake and reduces high-fat diet
(HFD)-induced hepatic steatosis (60). FATP2 and FATP4
reside mainly in peroxisomes and mediate transport of long-
chain fatty acids (LCFAs) into peroxisomes (60, 255). FATP2
also has very long-chain acyl-CoA synthetase activity (60,
255). LCFAs are activated and converted to LCFA-CoA by
long chain acyl-CoA synthetase (ACSL) (18, 143). Mammals
express five ACSL family members (ACSL1 and 3-6) (18,
143). ACSL1 and 5 are highly expressed in the liver (18, 143),
and knockdown of ACSL5 decreases lipid levels in cultured
hepatocytes (18); however, liver-specific deletion of ACSL1
does not alter lipid levels in the liver (143). Fatty acid binding
proteins (FABPs) bind to both LCFAs and LCFA-CoA and
act as intracellular fatty acid chaperones and carriers. Mam-
mals express a single FABP form in the liver (L-FABP). L-
FABP delivers its bound LCFAs to the nucleus where LCFAs
activate PPARα, a nuclear receptor family member which
promotes fatty acid β-oxidation (164, 255). Deletion of L-
FABP decreases hepatocyte fatty acid uptake, suppresses β-
oxidation, and protects against dietary steatosis (189, 190).
A separated study reported that the liver pool of NEFAs and
TAG are relatively normal or higher in L-FABP null mice
(164). The null mice have a compensatory increase in the
expression of sterol carrier protein-2 (SCP-2) which also binds
LCFAs (164).

De novo fatty acid synthesis
The liver is the main organ which converts carbohydrates
into fatty acids. Fatty acids are packed into VLDL particles
and delivered to adipose tissue and other extrahepatic tissues
through the circulation.

The hepatic lipogenic programs

Glucose is hydrolyzed into pyruvate through glycolysis.
Pyruvate is imported into the mitochondria and metabo-
lized by PDC to generate acetyl-CoA (Fig. 3). Acetyl-CoA
is combined with oxaloacetate to form citrate, which is
catalyzed by citrate synthase (Fig. 3). Citrate is exported
into the cytoplasm and split into acetyl-CoA and oxaloac-
etate by ATP-citrate lyase (ACL). Oxaloacetate is reduced
to malate which is subsequently converted into pyruvate by
malic enzyme, releasing NADPH (Fig. 3). Pyruvate is recy-
cled back into the mitochondria and carboxylated by PC to
form oxaloacetate which drives continuous citrate synthesis
(Fig. 3).

In the cytoplasm, acetyl-CoA is carboxylated by acetyl-
CoA carboxylase (ACC) to form malonyl-CoA (Fig. 3). Both
malonyl-CoA and NADPH are used as precursors to syn-
thesize palmitic acid (a 16-carbon fatty acid) by fatty acid
synthase (FAS). Mammals have two ACC genes, ACC1 and
ACC2 whose products are located in the cytoplasm and mito-
chondrial outer membrane, respectively. Systemic deletion of
ACC1 causes embryonic death (3). Hepatocyte-specific dele-
tion of ACC1 decreases the levels of malonyl-CoA, TAG,
and de novo lipid synthesis (162). However, a separate study
has reported that hepatocyte-specific deletion of ACC1 does
not alter malonyl-CoA levels and lipogenesis in the liver,
presumably due to a compensatory increase in ACC2 expres-
sion (77). Transient inhibition of both ACC1 and ACC2 in
the liver decreases levels of hepatic malonyl-CoA and lipo-
genesis, increases β oxidation, and protects against hepatic
steatosis (236). Mice with liver-specific deletion of FAS are
relatively normal (31), suggesting that fatty acid uptake is
sufficient to maintain normal hepatic lipid content in the
absence of liver FAS. Surprisingly, after fed a zero-fat/high
carbohydrate diet, mutant mice develop fatty livers and hypo-
glycemia which are reversed by treatments with PPARα ago-
nists (31). FAS products are believed to serve as endogenous
ligands for PPARα and stimulate fatty acid β-oxidation in the
liver (30, 31).

Palmitic acid is elongated by fatty acyl-CoA elongase
(Elovl) family members in the ER to generate LCFAs (>16
carbon chain) (Fig. 3). Deletion of Elovl6 protects against
hepatic steatosis and liver inflammation in mice fed an athero-
genic high-fat diet (AHF); conversely, liver-specific overex-
pression of Elovl6 increases AHF-induced fatty liver and liver
fibrosis (169). LCFAs are desaturated by stearoyl-CoA desat-
urases (SCDs), ER membrane enzymes, to form mono- and
poly-unsaturated LCFAs (Fig. 3). Global knockout of SCD1,
which catalyzes the synthesis of monounsaturated LCFAs,
protects against obesity (39, 193). Hepatocyte-specific dele-
tion of SCD1 also protects against high carbohydrate diet-
induced, but not HFD-induced, obesity and hepatic steato-
sis (175). SCD1 products, particularly oleate, appear to be
important regulators of glucose and lipid metabolism in the
liver (175).
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Regulation of de novo lipogenesis by the availability
of lipogenic substrates

Dietary carbohydrates drive lipogenesis. Pyruvate, the main
glycolytic product, provides a carbon source for lipogenesis
and links glycolysis to lipogenesis. GCK catalyzes the first
chemical reaction of glycolysis, and GCK activity is neg-
atively regulated by GKRP. A variant in the GKRP gene
is associated with hepatic steatosis and hyperglycemia in
patients with obesity (235). LRH-1 stimulates GCK expres-
sion, and hepatocyte-specific deletion of LRH-1 decreases
GCK levels, glycolysis, and de novo lipogenesis in the liver
(198). NADPH provides the reducing power for lipogenesis.
Malate is metabolized by malic enzyme to generate NADPH.
Moreover, glucose catabolism through the pentose phosphate
pathway provides an additional NADPH source for lipoge-
nesis (Fig. 3). Glucose-6-phosphate dehydrogenase and 6-
phosphogluconate dehydrogenase, which catalyze the reac-
tions to generate NADPH, are likely to be involved in the
regulation of lipogenesis.

Lipogenesis is controlled by multiple
transcription factors and coregulators
Lipogenesis is controlled in a large part through transcrip-
tional regulation of glycolytic genes and lipogenic genes.
Numerous transcription regulators have been identified to
activate these genes. Many regulators also regulate the expres-
sion of additional genes which are involved in the regulation
of lipid uptake, trafficking, and/or storage.

ChREBP

ChREBP binds to and activates the L-PK promoter in hepato-
cytes (290). L-PK is a key glycolytic enzyme. ChREBP also
stimulates the expression of lipogenic genes, including malic
enzyme, ACL, ACC, FAS, SCD1, and Elovls (88). Systemic
deletion of ChREBP decreases the expression of these genes,
thus inhibiting glycolysis and hepatic lipogenesis, and glu-
cose is used to synthesize glycogen in the livers of ChREBP
null mice (88). Conversely, overexpression of ChREBP in
the liver causes hepatic steatosis without concomitant insulin
resistance (13). ChREBP levels are elevated in obese mice,
and genetic deletion of ChREBP, or liver-specific inhibition
of ChREBP, decreases hepatic lipogenesis and steatosis in
ob/ob mice (46, 89).

ChREBP binds to Max-like protein X (Mlx), and the
heterodimer acts as a functional transcription factor (254).
ChREBP is phosphorylated and inhibited by PKA, and
dephosphoralated and activated by PP2A (108). Glucagon
stimulates phosphorylation of ChREBP at Ser196 by activat-
ing the cAMP/PKA pathway (Fig. 2B), resulting in nuclear
export and inactivation of ChREBP in the liver (45, 48).
Phosphorylated ChREBP binds to 14-3-3 and is retained
in the cytoplasm (171, 232). Glucose is a potent activator

of ChREBP. Glucose is oxidized to generate xylulose 5-
phosphate through the pentose phosphate pathway. Xylu-
lose 5-phosphate activates PP2A, which dephosphorylates
ChREBP, promoting nuclear translocation and activation of
ChREBP (105). G6P, a glycolytic intermediate, binds to and
activates ChREBP in hepatocytes (48). Additionally, F-2,6-
P2, a G6P-drived product, also stimulates nuclear translo-
cation of ChREBP (7). Glucose promotes acetylation of
ChREBP on Lys672 by p300, which increases ChREBP activ-
ity (17). Additionally, ChREBP binds to and is glycosy-
lated by O-linked β-N-acetylglucosamine transferase, and O-
GlcNacylation of ChREBP increases ChREBP stability (69).

SREBP

SREBP family members (SREBP-1a, -1c, and -2) are master
regulators of lipid metabolism (84). SREBP-1a and SREBP-
1c have different N-termini and are encoded by a single gene,
while SREBP-2 is encoded by a separate gene (84). Both
SREBP-1c and SREBP-2 are abundantly expressed in the liver
(84). SREBP1-c activates the genes that control fatty acid and
TAG synthesis, whereas SREBP-2 activates the genes that
control cholesterol biosynthesis (84). SREBP-1b promotes
both fatty acid and cholesterol synthesis (84).

SREBPs are integral ER membrane proteins. They are
translocated to the Golgi and cleaved sequentially by SIP1
and SIP2 proteases to release transcriptionally-active SREBPs
(84). ER stress promotes proteolytic cleavage and activation
of SREBP-1c in the liver, increasing lipogenesis (106). Low
levels of cholesterol potently stimulate SREBP processes in
hepatocytes (84). SREBP precursors bind to Scap which is
a cholesterol sensor and is required for the ER-Golgi trans-
port of SREBPs (84). Hepatocyte-specific deletion of Scap
markedly decreases hepatic NEFAs, TAG synthesis, and hep-
atic steatosis in both ob/ob mice and mice with diet-induced
obesity (177). Inhibition of phosphatidylcholine biosynthe-
sis reduces phosphatidylcholine pools in hepatocytes, which
promotes SREBP-1 cleavage and activation (268). Reduc-
tion in phosphatidylcholine/phosphatidylethanolamine ratios
may cause relocation of S1P and S2P to the ER, increas-
ing proteolytic activation SREBP-1 (268). SREBP activation
is also subjected to posttranslational modifications. AMPK
phosphorylates SREBP-1c at Ser372 and inhibits proteolytic
cleavages and nuclear translocation of SREBP-1c, thus sup-
pressing hepatic lipogenesis (147). SIRT1 deacetylates and
inhibits SREBP-1c, suppressing lipogenesis in the liver (209,
269). SREBP activation is inhibited by nuclear translocation
of lipin 1 (207). The mTORC1 complex phosphosphorylates
lipin 1 and promotes cytoplasmic translocation of lipin 1, thus
stimulating SREBP-1 activity and lipogenesis (207). PGC-1β

is a coactivator for SREBP family members and simulates
liver lipogenesis (149). Knockdown of PGC-1β in the liver
decreases the expression of lipogenic genes and ameliorates
fructose-induced hepatic steatosis (185).
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LXR and FXR

LXR has two isoforms (α and β) in rodents, and each isoform
forms heterodimers with the retinoid X receptor to activate
its target genes (23). LXR is activated by cholesterol metabo-
lites called oxysterols (35, 97). LXR is well known to con-
trol reverse cholesterol transport by stimulating the expres-
sion of ATP-binding cassette transporter A1 (ABCA1) and
ABCG1 (23). It also stimulates de novo fatty acid biosyn-
thesis (23). LXR directly binds to the SREBP-1 promoter
and increases SREBP-1c expression (224, 238). It also stimu-
lates ChREBP expression (29). Additionally, LXRα directly
stimulates expression of PFK-2/FBP-2, which produces F-
2,6-P2 to stimulate glycolysis (302). LXR agonists stimulate
the expression of lipogenic genes and increase both liver and
plasma TAG levels in wild-type, but not LXRα/β double
knockout, mice (238).

FXR is activated by bile acids and suppresses bile acid
synthesis in a negative feedback fashion (23, 247). It stimu-
lates the expression of SHP, a transcription repressor which
inhibits the expression of Cyp7a (23, 247). Cyp7a catalyzes
hydroxylation of cholesterol, the rate-limiting step of bile
acid biosynthesis. FXR also regulates many genes which
regulate NEFA and TAG metabolism (165, 208, 247, 259).
SHP suppresses the ability of LXR to stimulate the expres-
sion of lipogenic SREBP-1 (279). FXR binds to and inhibits
ChREBP, suppressing both glycolysis and lipogenesis (27).
Bile acids stimulate the expression and secretion of FGF15/19
from the GI by activating FXR in enterocytes. FGF15/19 sup-
presses lipogenesis in the liver (16). FXR knockout mice have
higher levels of TAG both in the circulation and in the liver
(247). FXR is acetylated by p300 and deacetylated by SIRT1,
and SIRT1-mediated deacetylation increases FXR activity
(109). Obesity is associated with higher levels of FXR acety-
lation in the liver (109). PGC-1α serves as a FXR coactivator
for some FXR target genes (300).

PPARγ and PPARδ

The levels PPARγ in the liver are low in normal mice and
increase in mice with obesity (65, 167, 178). Hepatic PPARγ

stimulates the expression of many genes which control fatty
acid uptake, fatty acid trafficking, and TAG biosynthesis in the
liver (138). PPARγ also stimulates the expression of Cidec, a
LD protein (168). Hepatocyte-specific deletion of PPARγ sup-
presses the expression of many lipogenic genes and protects
against hepatic steatosis in mice fed a HFD (178). Ablation
of liver PPARγ ameliorates hepatic steatosis in ob/ob as well
as in lipoatrophic A-ZIP/F-1 mice (65, 167). Expression of
hepatic PPARγ is repressed by the hairy enhancer of split 1
(HES-1) in the liver (80). CREB stimulates the expression of
HES-1 which in turn suppresses PPARγ expression and lipo-
genesis in the fasted state (80); however, a separate study has
reported that knockdown of CREB in the liver decreases hep-
atic lipogenesis in rodents with type 2 diabetes (56). Like

PPARγ, PPARδ also activates lipogenic genes, and liver-
specific expression of PPARδ increases liver lipid levels in
mice (153).

Insulin stimulates lipogenesis in the liver
Insulin is the primary hormone driving hepatic lipogenesis in
the fed state; surprisingly, acute insulin stimulation inhibits
FAS activity in hepatocytes (186). The PI 3-kinase/Akt path-
way is required for both insulin suppression of gluconeoge-
nesis and insulin stimulation of lipogenesis; however, lipo-
genesis and gluconeogenesis are mediated by two distinct
pathways downstream of Akt (144). Insulin stimulates acti-
vation of mTORC1 through the PI 3-kinase/Akt pathway,
and mTORC1 is required for insulin to stimulate SREBP-1
expression and lipogenesis (Fig. 2A) (144). Akt, particularly
Akt 2, stimulates SREBP-1 activation and lipogenesis (270,
293). Inhibition of hepatic Akt by hepatocyte-specific dele-
tion of rictor inhibits both glycolysis and lipogenesis (74).
Disruption of mTORC1 signaling in the liver, by deleting
Raptor, prevents dietary hepatic steatosis (207). mTORC1
phosphosphorylates lipin 1 and blocks its ability to suppress
SREBP-1 activity (Fig. 2A) (207). Activation of mTORC1
alone is not sufficient to stimulate lipogensis in the liver (270,
293). Akt suppresses the activity of INSIG2 (Fig. 2A), an
ER membrane protein which binds to Scap, blocks the ER-
Golgi translocation of SREBPs, and inhibits proteolytic acti-
vation of SREBPs (293). Insulin stimulates the expression of
SREBP-1, and LXR mediates insulin stimulation of SREBP-
1 expression (33, 260). Insulin stimulates phosphorylation
of upstream stimulatory factor-1 (USF-1) through DNA-PK
(284). Phosphorylation increases acetylation and activation
of USF-1USF-1 which in turn stimulates the expression of
FAS and mitochondrial glycerol-3-phosphate acyltransferase
(284). Deletion of USF-1 or USF-2 suppresses carbohydrate-
stimulated expression of FAS in the liver during a fast-
ing/feeding transition (28). Additionally, insulin stimulates
glycolysis as described before, thus increasing the availabil-
ity of lipogenic precursors.

Regulation of lipogenesis by hepatic metabolic
states, the circadian clock, and ER stress
Hepatic lipogenesis is low in the fasted state and high in the fed
state. SIRT1 is activated in the fasted state, and it deacetylates
and inhibits lipogenic SREBP-1c (209, 269). Hepatocyte-
specific deletion of SIRT1 exacerbates dietary hepatic steato-
sis (216). SIRT1 binds to and is inhibited by deleted in breast
cancer-1 (DBC1) (113, 304). Fasting decreases DBC1-SIRT1
interaction in the liver, increasing SIRT1 activity (58). Dele-
tion of DBC1 increases SIRT1 activity in the liver and pro-
tects against dietary hepatic steatosis in mice (58). AMPK
phosphorylates SREBP-1c at Ser372 and inhibits proteolytic
cleavage and nuclear translocation of SREBP-1c, thus sup-
pressing hepatic lipogenesis (147). In the liver, mTORC1 is
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inhibited in the fasted state and activated in the fed state (240),
and mTORC1 stimulates lipogenesis as described above.

Chronic ER stress promotes hepatic steatosis (229). The
PERK/elF2α pathway stimulates both HGP and lipogenesis
by increasing the translation of C/EBPα and C/EBPβ as well
as the expression of PPARγ (200). Liver-specific overexpres-
sion of C/EBPβ induces hepatic steatosis (217); conversely,
deletion of C/EBPβ ameliorates hepatic steatosis in db/db
mice (237). XBP1 activates the expression of key lipogenic
genes in hepatocytes, including SREBP1, DGAT2, and ACC2
(131, 192); however, IRE1α is able to degrade the mRNAs
of some lipogenic enzymes, suppressing hepatic lipogenesis
(249).

Core circadian genes are involved in hepatic lipid
metabolism. Mice with liver-specific deficiency of molecular
clock Rev-erbα/β develop hepatic steatosis (20, 63). Genomic
recruitment of HDAC3 displays a circadian rhythm and is
controlled by circadian clocks, and the rhythmic recruitment
of HDAC3 regulates circadian rhythm of hepatic lipogene-
sis (63). Hepatocyte-specific deletion of HDAC3 increases
lipogenic gene expression, resulting in hepatic steatosis in
mice (119).

Fatty acid β-oxidation and ketogenesis
Liver fatty acid β-oxidation is high in the fasted state and
low in the fed state. Mitochondrial β-oxidation not only pro-
vides energy for hepatocytes but also generates ketone bod-
ies (β-hydroxybutyrate, acetoacetate, and acetone) which are
exported into the circulation and provide a metabolic fuel
for extrahepatic tissues during fasting. LCFA-CoA translo-
cation into the mitochondria, which is mediated by carni-
tine palmitoyltransferase 1 (CPT-1), is the rate-limiting step
for fatty acid β oxidation. CPT-1 activity is inhibited by
malonyl-CoA. Mitochondrial ACC2 generates malonyl-CoA
and increases local malonyl-CoA concentrations, thus inhibit-
ing CPT-1 activity and β oxidation (1). Systemic deletion of
ACC2 increases mitochondrial fatty acid β-oxidation, leading
to lean phenotypes (2). Long-chain acyl-CoA dehydrogenase
(LCAD) activity is also regulated through posttranslational
modifications. Deletion of LCAD leads to hepatic steatosis
and insulin resistance (296).

PPARα is the master regulator of fatty acid β oxida-
tion and promotes fatty acid β-oxidation in both the mito-
chondria and peroxisomes (110). PPARα expression in the
liver is higher in the fasted state, and deletion of PPARα

decreases hepatic fatty acid β-oxidation in the fasted state and
exacerbates fasting-induced hepatic steatosis, hypoglycemia,
hypoketonemia, and hypothermia (110, 140). PPARα is a
nuclear receptor family member and is activated by a sub-
type of LCFAs and phosphatidylcholines (30). FAS products
appear to be endogenous PPARα ligands in the liver (30,31).
PPARα agonist treatments correct hepatic steatosis and hypo-
glycemia in mice with liver-specific deletion of FAS that are
fed a zero-fat, high carbohydrate diet (31). PPARα ligands
are able to be inactivated through peroxisomal β-oxidation,

and deletion of peroxisomal fatty acyl-CoA oxidase increases
PPARα activity in the liver (61), and decreases hepatic steato-
sis and obesity in ob/ob mice (86).

Multiple PPARα coactivators have been identified to pro-
mote β-oxidation in the liver. PGC-1α is a well-characterized
PPARα coactivator which promotes β-oxidation (266). In
the fasted state, SIRT1 deacetylates PGC-1α and increases
its activity (226). SIRT1 also physically interacts with
PPARα and promotes PPARα transcriptional activity in the
liver (216). Hepatocyte-specific deletion of SIRT1 decreases
the expression of β-oxidative genes and β-oxidation rates,
increases fasting-induced lipid accumulation in the liver,
and exacerbates diet-induced steatosis (216). Hepatic lipin
1, which is higher in the fasted state, binds to both PPARα

and PGC-1α in the nucleus and promotes β-oxidation (64). In
the fed state, insulin stimulates phosphorylation of PGC-1α

by Akt, which impairs the ability of PGC-1α to stimulate fatty
acid β-oxidation (146). Activation of mTORC1 also inhibits
PPARα activity, β-oxidation, and ketogenesis in the fed state
(240). PGC-1α binds to BAF60α, a subunit of the SWI/SNF
chromatin-remodeling complex; the PGC-1α/BAF60α com-
plex interacts with PPARα and mediates PPARα-activated
expression of β-oxidation genes in the liver (145). BAF60α

overexpression in the liver increases β-oxidation and ame-
liorates hepatic steatosis in mice with obesity (145). PGC-
1β and transducin beta-like 1 (TBL) also serve as PPARα

coactivators. Hepatocyte-specific overexpression of PGC-1β

increases the expression of β-oxidative genes and protects
PGC-1β transgenic mice from diet-induced steatosis (12).
Knockdown of TBL1 or its partner TBLR1 in the liver inhibits
PPARα activity, decreases β-oxidation and ketogenesis, and
promotes hepatic steatosis (124).

Multiple factors regulate β-oxidation through PPARα.
Fasting stimulates expression and secretion of FGF21 from
the liver (9, 91). Glucagon stimulates FGF21 secretion in both
rodents and humans (6, 72). FGF21 stimulates the expres-
sion of PGC-1α in the liver in an autocrine/paracrine fashion,
thus increasing fatty acid β oxidation (Fig. 2B), TCA flux,
and ketogenesis (212). Glucagon also stimulates β-oxidation
in the liver by a PPARα-dependent mechanism (Fig. 2B)
(156). Glucagon deficiency is associated with higher TAG
levels in the liver (76). Deletion of glucagon receptors abol-
ishes fasting-stimulated β-oxidation in hepatocytes (156).
Glucagon secretion increases during exercise, and exercise
attenuates hepatic steatosis in mice with dietary obesity (14).
Deletion of glucagon receptors abrogates protection against
hepatic steatosis by exercise (14). FGF15/19, a GI-derived
hormone, inhibits PGC-1α expression and β-oxidation in the
liver (211).

In addition to PPARα, hepatic PPARβ/δ is believed to act
as a plasma free fatty acid sensor and promotes hepatic β-
oxidation in the liver (234). A subset of PPARα target genes,
which stimulate fatty acid β-oxidation, may also be stimu-
lated by PPARβ/δ in the liver (234). Mitochondrial SIRT3,
which is upregulated in the fasted state, deacetylates and acti-
vates LCAD in the liver, thus promoting fatty acid β-oxidation
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(82). SIRT3 also deacetylates and activates mitochondrial 3-
hydroxy-3-methylglutaryl CoA synthase 2 (HMGCS2), pro-
moting ketogenesis in the fasted state (246). SIRT6 is a
nuclear, chromatin-associated protein which promotes resis-
tance to DNA damage and suppresses genomic instability
(181). Hepatic SIRT6 is higher in the fasted state, promotes
β-oxidation, and suppresses glycolysis; liver-specific deletion
of SIRT6 promotes hepatic steatosis (112).

Liver-Extrahepatic Tissue Crosstalk
The liver has close communications with extrahepatic tis-
sues, including skeletal muscle, adipose tissue, gut, and the
brain. Liver-produced glucose and ketone bodies are deliv-
ered to muscle and other extrahepatic tissues and are used
as metabolic fuels during fasting and exercise. Skeletal mus-
cle provides the liver with lactate and amino acids which
serve as gluconeogenic substrates for hepatocytes to synthe-
size glucose. Adipose tissue produces NEFAs and glycerol
through lipolysis during fasting and exercise. Hepatocytes
oxidize fatty acids to generate ketone bodies, or pack NEFAs
into VLDL particles. Ketone bodies and VLDL are secreted
from the liver and utilized by extrahepatic tissues. Glycerol is
used by hepatocytes to synthesize glucose or TAG.

Liver-adipose tissue crosstalk
NEFAs, which are released from adipose tissue through lipol-
ysis, are the main source for liver TAG pools. Hepatocyte fatty
acid uptake provides ∼59% supplies of liver fat in humans
with NAFLD (52). In adipocytes, TAG is stored in LDs which
are believed to be generated from the ER (68). LDs consist of
a neutral lipid core (TAG and cholesterol esters) covered by
a phospholipid monolayer, and are coated with perilipin fam-
ily proteins, enzymes, and vesicle trafficking proteins (68).
LD proteins, including perilipins, tail interacting protein 47,
(TIP47), and adipose differentiation-related protein, and cell
death-inducing DNA fragmentation factor-like effector family
members, are involved in the regulation of lipolysis (68, 215).
TAG is hydrolyzed mainly by ATGL to release NEFAs and
diacylglycerol (DAG) (295). DAG is further hydrolyzed by
hormone-sensitive lipase (HSL) to release NEFAs and monoa-
cylglycerol (MAG), and MAG is completely hydrolyzed by
MAG lipase to release glycerol and NEFAs (295). HSL is also
able to hydrolyze retinyl esters and cholesterol esters (295).
CGI-58, an endogenous activator of ATGL, binds to perilip-
ins under basal conditions; catecholamine hormones stimulate
phosphorylation of perilipins which releases CGI-58, allow-
ing it to activate ATGL and stimulate lipolysis (67, 129). In
contrast to CGI-58, G0S2 binds to and inhibits ATGL (292).
Adipocyte-specific deletion of ATGL blocks lipolysis and the
release of NEFAs, thus reducing β-oxidation and ketogenesis
in the liver during starvation (285).

Adipose tissue also regulates liver energy metabolism
by secreting a variety of adipokines, including adiponectin

and various cytokines (218). Adiponectin stimulates β-
oxidation in the liver and improves liver insulin sensi-
tivity (288, 291). IL-6 is able to suppress insulin sig-
naling by stimulating expression of SOCS3 in the liver
(231). SOCS3 inhibits insulin signaling by both promot-
ing IRS protein degradation and uncoupling IRS proteins
from insulin receptors (228, 263). Adipocyte-specific dele-
tion of JNK1 decreases secretion of IL-6 by adipose tissue
and improves liver insulin sensitivity and hepatic steatosis in
mice with dietary obesity (231). C1q/TNF-related protein-
12 (CTRP12), an adiponectin-related adipokine secreted
mainly from adipocytes, activates the PI 3-kinase/Akt path-
way and suppresses hepatic gluconeogenesis (281). FABP4
(also called aP2) is secreted by white adipose tissue, and its
secretion is higher in the fasted state (25). FABP4 directly
stimulates gluconeogenesis in hepatocytes (25). C16:1n7-
palmitoleate is secreted by adipose tissue and acts as a lipid
hormone to suppress hepatic steatosis (24). Additionally, adi-
pose tissue is able to regulate liver metabolism indirectly by
secreting hormones (e.g., leptin) which act on the brain to
regulate liver metabolism (180).

The liver also regulates the metabolic activity of adipose
tissue. FGF21 is an important metabolic hormone secreted
mainly from the liver in the fasted state (9, 91). Glucagon
stimulates FGF21 secretion in both rodents and humans (6,
72). FGF21 stimulates both lipolysis and the expression and
secretion of adiponectin by adipose tissue (6, 72, 83, 150).
Additionally, the liver also regulates adipose lipolysis indi-
rectly. GH is secreted from the pituitary gland. It stimulates
not only hepatic gluconeogenesis but also adipocyte lipolysis.
Liver-specific deletion of GH receptors causes liver GH resis-
tance, resulting in a compensatory increase in the levels of
circulating GH which promotes adipocyte lipolysis and hep-
atic steatosis (62). Liver-specific deletion of JAK2 or STAT5
also causes GH resistance in the liver and increases compen-
satory GH secretion, thus increasing adipocyte lipolysis and
hepatic steatosis (42, 250).

Liver-gut crosstalk
The gut is anatomically connected to the liver by the por-
tal vein circulation. Most absorbed nutrients, GI hormones,
and GI metabolites are directly delivered to the liver. Some
metabolites from gut microbiota are also delivered to the
liver via the portal vein circulation (79). These biologically
active molecules directly regulate liver glucose and lipid
metabolism. The GI also regulates liver metabolism indirectly
through the central nervous system (CNS). In response to food
ingestion, nutrient signals, encoded by duodenum lipid sen-
sors, are transmitted via intestinal vagal afferent fibers to the
nucleus of the solitary tract (NTS) in the medulla (272). The
NTS in turn suppresses HGP via the hepatic branch of vagus
nerve fibers (272). For instance, intestinal cholecystokinin
(CCK) activates CCK-A receptors in the intestinal afferent
fibers and decreases HGP via the gut-brain-liver axis (37).
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Liver-brain crosstalk
The CNS regulates liver energy metabolism directly via both
the sympathetic nervous system (SNS) and the parasympa-
thetic nervous system which directly innervate the liver. The
neural circuitry in the hypothalamus and the hindbrain regu-
late the activity of most internal organs, including the liver,
and maintains internal homeostasis (252). The SNS promotes
HGP and mobilization of metabolic fuels for extrahepatic tis-
sues, whereas the parasympathetic system antagonizes SNS
action and inhibits HGP and promotes fuel storage in the liver.

Insulin directly regulates liver metabolic activity as
described above, and it also regulates hepatic energy
metabolism indirectly by activating insulin receptors in the
hypothalamus. Insulin stimulates the PI 3-kinase/Akt pathway
in the brain, which in turn causes downregulation of GSK-3β

in the liver and increases glycogen synthesis (220). Insulin has
been reported to activate its receptors in hypothalamic neu-
rons and suppress HGP in a vagus nerve output-dependent
manner (194, 196). Hypothalamic insulin signaling promotes
production of hepatic IL-6 which in turn activates STAT3 and
suppresses gluconeogenesis in the liver (93). AgRP neuron-
specific deletion of insulin receptors blocks the ability of
central insulin to suppress HGP (120). Leptin, an adipose
hormone, also regulates liver energy metabolism in addition
to controlling food intake and body weight (180, 222, 223).
Central administration of leptin suppresses glycogenolysis,
gluconeogenesis, and the expression of G6Pase and PEPCK-
C in the liver (19). Leptin, by activating the PI 3-kinase path-
way in hypothalamic neurons, suppresses hepatic lipogenesis
by increasing SNS outflow to the liver (53, 222, 223, 277).
Hypothalamic neurons are also able to directly sense glucose,
amino acids, and lipids, and they suppress HGP by increasing
vagal nervous outflow to the liver (126,127, 195). Injection of
leucine into the mediobasal hypothalamus suppresses hepatic
glycogenolysis and gluconeogenesis in rats (256). Activa-
tion of glucose sensing pathways in the brain also suppresses
SCD1 expression, lipogenesis, and VLDL secretion in the
liver (125).

The CNS also regulates liver activity indirectly by control-
ling secretion of various metabolic hormones. Disruption of
glutamatergic transmission in the ventromedial hypothalamus
by deleting VGLUT2 in SF1-expressing neurons decreases
secretion of glucagon from pancreatic α-cells in the fasted
state, resulting in a decrease in hepatic gluconeogenesis and
blood glucose levels (261). Mice with leptin receptor LepRb
deficiency develop obesity, type 2 diabetes, and high levels
of circulating insulin and glucagon. Restoration of LepRb spe-
cifically in POMC neurons, an important subpopulation of hy-
pothalamic neurons, markedly decreases hyperglucagonemia,
leading to reductions in HGP and blood glucose levels (15).

Obesity, NAFLD, and Type 2 Diabetes
The prevalence of obesity has been increasing rapidly. Obe-
sity is associated with NAFLD and type 2 diabetes. HGP

contributes significantly to hyperglycemia in humans with
type 2 diabetes (41, 161, 172). GCK promotes glucose utiliza-
tion in the liver and inhibits HGP, and GCK activity is lower
in Zucker diabetic, obese rats (262). Liver-specific overex-
pression of GCK decreases HGP and hyperglycemia in these
rats (262). Conversely, hepatocyte-specific deletion of GCK
results in mild hyperglycemia and hyperinsulinemia (210).

Obesity is associated with insulin resistance, a key causal
factor for the pathogenesis of NAFLD and type 2 diabetes.
Multiple factors have been described to induce insulin resis-
tance in the liver. Insulin signaling is negatively regulated
by protein phosphatases, including PTP1B and Shp-1. Liver-
specific deletion of PTP1B enhances insulin signaling in the
liver and the ability of insulin to suppress gluconeogene-
sis, protecting against diet-induced NAFLD (44). NAFLD is
associated with increased gluconeogenesis in humans (258).
Hepatocyte-specific deletion of Shp1 protects against liver
insulin resistance in mice fed a HFD (289). Hepatic insulin
signaling is also negatively regulated by SOCS1 and SOCS3
(228, 263). Aside from these negative regulators, insulin sig-
naling is also positively regulated by SH2B1. SH2B1, a SH2
domain-containing adaptor protein, binds to both IRS pro-
teins and insulin receptors and enhances insulin signaling
(54, 179). Deletion of SH2B1 results in leptin resistance,
insulin resistance, obesity, NAFLD, and type 2 diabetes in
mice (179, 222, 223). Additionally, insulin is cleared in the
liver through its receptor-mediated endocytosis and degrada-
tion (55), and carcinoembryonic antigen-related cell adhe-
sion molecule 1 (CEACAM1) binds to insulin receptors and
promotes insulin clearance (213). Deletion of CEACAM1
impairs insulin clearance in the liver, resulting in hyper-
insulinemia and liver insulin resistance (43). Liver-specific
overexpression of a dominant negative CEACAM1 (S503A)
similarly decreases insulin clearance, leading to hyperinsu-
linemia and insulin resistance which exacerbate HFD-induced
NAFLD (136, 213).

Insulin sensitivity is directly regulated by lipid molecules.
Saturated NEFAs promote insulin resistance by activating
toll-like receptor 4 (TLR4) (245, 251). Fetuin-A, a glyco-
protein secreted by the liver, acts as a NEFA carrier in the
circulation, and the NEFA-fetuin-A complex binds to TLR4
and promotes inflammation and insulin resistance (204). DAG
induces hepatic insulin resistance by activating PKCε which
phosphorylates IRS proteins at inhibitory Ser/Thr residues
(104). Ceramides promote insulin resistance by inhibiting
Akt activation through PP2A and JNK (203). Additionally,
obesity and NAFLD are associated with ER stress in the liver,
which promotes insulin resistance (202).

Obesity is associated with chronic, low grade inflamma-
tion which in turn promotes insulin resistance (85). Proin-
flammatory cytokines activate the IKKβ and the JNK path-
ways, and both IKKβ and JNK inhibit insulin signaling (22,
85). Liver-specific deletion of IKKβ improves hepatic insulin
sensitivity and reduces hepatic gluconeogenesis in HFD-fed
mice and ob/ob mice (8). Hepatocyte-specific deletion of
JNK1 results in liver inflammation and steatosis in mice fed a
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normal chow diet (230). C-reactive protein, an acute phase
protein secreted by the liver, inhibits insulin signaling through
the ERK pathway in primary hepatocytes and inhibits the abil-
ity of insulin to suppress HGP in rats (287). Kupffer cells pro-
vide the major source of cytokines, and depletion of Kupffer
cells improves NAFLD and liver insulin resistance (87).

In addition to insulin resistance, aberrant counterregu-
latory hormone action in the liver also contributes to the
progression of type 2 diabetes (264). Silencing of glucagon
receptors in the liver reduces blood TAG levels and improves
glucose intolerance in both db/db mice and Zucker diabetic
fatty rats (148, 248). We recently reported that liver inflamma-
tion enhances the ability of glucagon to stimulate gluconeoge-
nesis, contributing to hyperglycemia and glucose intolerance
in mice with obesity (36, 244).

Conclusion
The liver has long been recognized to be an essential metabolic
organ. When carbohydrates are abundant, the liver converts
glucose into glycogen and lipids. In the fasted state, the liver
produces glucose via glycogenolysis and gluconeogenesis.
The liver also converts fatty acids into ketone bodies which
provide additional metabolic fuels for extrahepatic tissues
during fasting. The fasted-fed switch of metabolic fuels in
the liver is tightly controlled by neuronal and hormonal sys-
tems as well as hepatic metabolic states. Insulin suppresses
glucose production and ketogenesis and stimulates glycolysis
and lipogenesis in the liver. Insulin resistance is not only a
hallmark of type 2 diabetes but also promotes type 2 diabetes
progression in obesity. Glucagon counteracts insulin action.
Hepatic energy metabolism is also regulated by numerous
transcription factors and coregulators, and their activity is
regulated by insulin, glucagon and other metabolic hormones.
These external and intrinsic regulators act coordinately, addi-
tively, synergistically, and/or antagonistically to control glu-
coneogenesis, β-oxidation, and lipogenesis in the liver. Dys-
regulation of liver energy metabolism is a major contributor
to insulin resistance, NAFLD, type 2 diabetes.
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