
VIRAL IMMUNOLOGY
Volume 21, Number 2, 2008
© Mary Ann Liebert, Inc.
Pp. 123–132
DOI: 10.1089/vim.2008.0007

Guidelines for Plaque-Reduction Neutralization Testing of
Human Antibodies to Dengue Viruses

JOHN T. ROEHRIG,1 JOACHIM HOMBACH,2 and ALAN D.T. BARRETT3

ABSTRACT

Through the Advisory Committee on Dengue and other Flavivirus Vaccines, the World Health Or-
ganization (WHO) has had a long-standing commitment to facilitate and to guide research and de-
velopment of vaccines for medically important flaviviruses. Recently, the Paediatric Dengue Vaccine
Initiative (PDVI) was formed to accelerate the development, testing, and introduction of dengue (DEN)
vaccines worldwide, partnering with WHO in this important public health effort. There are now a va-
riety of DEN vaccines in various stages of the developmental pipeline. In an attempt to make inter-
laboratory information more directly comparable, WHO with the support of PDVI initiated a pro-
gram to coordinate the procedures used for the plaque-reduction neutralization test (PRNT). The
PRNT is the most common assay used to measure neutralizing antibody. The presence of antibody is
believed to be most relevant means of determining protective anti-DEN virus (DENV) immunity. While
other neutralizing antibody assays are being considered for use in large-scale vaccine field trials, the
PRNT is still considered to be the laboratory standard against which other neutralizing antibody as-
says should be compared. The need for PRNT coordination has been identified at several consulta-
tions between the WHO and PDVI. A more complete version of these guidelines is available on the
WHO website: http://www.who.int/immunization/documents/date/en/index.html.
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INTRODUCTION

THE DENGUE VIRUSES (DENVS) ARE MEMBERS OF THE

FAMILY FLAVIVIRIDAE, genus Flavivirus, are mos-
quito-borne, and represent a major public health problem
throughout the tropical world. The DENVs are a set of
four different serotypes of viruses (DENV 1–4). Each of
these DENVs is similar to one another, but serologically
distinct enough that infection with one serotype will not
protect against infection with another serotype. For this
and other reasons to be discussed later, an effective

DENV vaccine should induce an immune response
against the four serotypes simultaneously. Although now
somewhat dated, the review book on DEN compiled by
Gubler and Kuno still serves as an excellent source for
information on DEN (16).

Additionally, there are no laboratory animal models
that reliably mimic clinical human dengue disease. The
lack of a suitable animal model makes it difficult to as-
sess protective capacities of vaccine candidates and cor-
relates of protection in vivo. In the absence of correlates,
the protective capacity of any vaccine candidate will be
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finally defined as its ability to protect humans from
DENV infection. Laboratory studies with DENVs and
other flaviviruses have indicated, however, that protec-
tion of small animals from virus infection is best 
correlated to levels of virus-neutralizing antibodies
(1,24,25,27). Similar studies with DENV in sub-human
primate models have confirmed these observations
(2,17,41,53). Sub-human primate studies have been used
to identify and down-select candidate dengue vaccines
with levels of dengue-neutralizing antibody (as measured
by the PRNT), serving as the correlate of vaccine im-
munogenicity and reduced viremia following challenge
with virulent wild-type virus used as a measure of vac-
cine efficacy. While the correlation of the presence of
virus-neutralizing antibody to protection from infection
is not absolute, the studies suggest that the PRNT is the
best and most widely accepted approach to measuring
virus-neutralizing and protective antibodies. Newer as-
says measuring virus-neutralizing antibodies are being
developed and will be briefly discussed later.

All flaviviruses are simple positive-sense, single-
stranded, RNA viruses, approximately 55 nm in diame-
ter. The genome is approximately 11,000 nucleotides
long, with 5� capped and 3�-end usually not polyadeny-
lated. The genome encodes 10 proteins in a single open
reading frame (Fig. 1). There are three structural proteins
encoded in the 5�-one quarter of the viral genome: the
capsid (C) protein forms the nucleocapsid shell protect-
ing the viral genome, and the premembrane (prM), and
envelope (E) proteins, both virion surface proteins em-
bedded in the virion envelope. Seven non-structural (NS)
proteins are encoded in the 3�-two thirds of the viral
genome: NS1, NS2A, NS2B, NS3, NS4A, NS4B, and
NS5. Each of the NS proteins has specific viral functions,
but for the purpose of these guidelines, will not be dis-
cussed in further detail.

FLAVIVIRUS IMMUNOCHEMISTRY

Antibody-mediated virus neutralization is defined as
the interaction of virus and antibody resulting in inacti-
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vation of virus such that it is no longer able to infect and
replicate in cell cultures or animals. Virus-neutralizing
antibody is the primary protective antibody type elicited
by flaviviral vaccines that result in protection from dis-
ease. The flaviviral E glycoprotein is a class II fusion
protein and is responsible for viral attachment to host-
cell receptors, and virus-mediated cell membrane fusion
(49). As such, it is the most important viral protein with
regard to viral infectivity, and therefore elicits essentially
all virus-specific neutralizing antibody. It is primarily
anti-E glycoprotein antibody that is measured in the cur-
rent PRNT. Other non-E glycoprotein-specific antibod-
ies (e.g., anti-NS1 antibody) can demonstrate virus pro-
tective effects in vivo in small animal models; however,
these effects are not mediated by virion-antibody inter-
actions (6,8,9,46,57).

Great progress in understanding the structure and
function of the flaviviral E glycoprotein has recently
been made (33,35,37,54,55). The E glycoprotein exists
as 90 “head-to-tail” homodimers on the virion surface
(Fig. 2). The E glycoprotein monomer can be divided
into three structural domains: DI, DII, and DIII (Fig. 3).
DII (also known as the dimerization domain) is a long
finger-like structure that contains the hydrophobic
membrane-fusion sequence at its tip. In the homodimer,
the fusion tip is protected during replication by a com-
bination of DIII of the associated monomer, E protein
glycosylation, and the prM protein (40). DIII has been
shown with DENV to be involved in virus attachment
to Vero cells in culture (11). These binding character-
istics have been confirmed using expressed DIII (7). The
DI contains the E glycoprotein molecular hinge. As a
class II fusion protein, the E glycoprotein can undergo
an acid-catalyzed oligomeric reorganization into a fu-
sogenic homotrimer (3,36,48,56). It is believed that this
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FIG. 1. Organization of the flaviviral genome.

FIG. 2. Structure of the flavivirion. Cryoelectron micro-
scopic structure of the West Nile virus. (A) Surface shaded
view of the West Nile virion looking down the fivefold axis.
(B) C-alpha trace showing the fitted E protein heterodimers
looking down the fivefold axis. Courtesy of Buerbel Kaufmann
and Richard Kuhn, Purdue University.
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event occurs in the endosome, allowing the viral nu-
cleocapsid to escape into the cytoplasm and initiate
RNA and protein synthesis. Antibodies to both DII and
DIII have been shown to neutralize virus. Anti-DIII an-
tibodies tend to be powerful neutralizing antibodies, and
are more virus type–specific. Anti-DII antibodies are
more virus cross-reactive, and while they can neutral-
ize virus infectivity, they are usually less potent than
anti-DIII antibodies (10). Two mechanisms of flavivi-
ral neutralization (blocking attachment of virus to cells,
and blocking the virus fusion process) have been iden-
tified (11,13). It is not known at this time how many
antibody molecules are needed to neutralize the infec-
tivity of a single virion. However, there is evidence that
for some monoclonal antibodies it is not necessary for
antibodies to bind to all 180 copies of the E protein to
mediate neutralization (15,39).

DENV IMMUNOLOGY

The adaptive, protective immune response to DENV
infection is driven by the presence or absence of virus-
neutralizing antibodies and T-cell responses involved in
helping antibody synthesis. Upon infection DENV elic-
its IgM, IgG, and IgA antibody responses. The IgM re-
sponse begins early, frequently before onset of symp-
toms. IgM is usually detectable in serologic assays by
7–8 d after onset of symptoms (44). IgA antibodies are
also detectable and have half-lives similar to those of IgM
(14). IgG antibodies are detectable soon after infection
and are maintained for years (19). Infection with any
given DENV serotype results in immunity to that partic-
ular serotype; however, there is no long-term protection
(�6 mo) against infection with any of the other three
DEN serotype viruses (45).

Re-infection of individuals with a distinct second or
third serotype of DENV may result in dengue hemor-
rhagic fever (DHF), or a more severe infection resulting
in dengue hemorrhagic fever (DHF) and/or dengue shock
syndrome (DSS). There have been a number of hy-
potheses presented that might explain the more severe
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manifestation of disease following secondary DENV in-
fections. Detailed discussions on these mechanisms are
beyond the scope of this paper. Regardless of the hy-
pothesized mechanism, pre-existing DENV-reactive an-
tibody appears to be one factor involved in mediating
DHF/DSS (5,18,20–23,28–30,32). The antibodies that
are most likely involved are those that cross-react with,
but do not neutralize, multiple serotypes of DENV. Non-
neutralized DENV-antibody complexes can be ushered
into DENV-susceptible cells via surface expressed Fc re-
ceptors (4,34,42,47). This phenomenon is known as an-
tibody-dependent enhancement (ADE) of DENV repli-
cation.

The concept of ADE of DENV infections has been
studied for a number of years, and remains a concern for
vaccine developers. While the biological relevance of in
vitro ADE remains ill-defined, our understanding of the
antibody specificities that lead to protection or enhance-
ment is improving. It is known that antibodies elicited by
DIII of the E glycoprotein are more virus-type specific
and neutralizing. Because of their high virus-neutralizing
potential, these antibodies are highly protective in animal
models of infection. On the other hand, antibodies elicited
by either DI or DII are more cross-reactive among
viruses, and demonstrate lower or no virus-neutralizing
capacity. Recent evidence from West Nile virus (WNV)
primary-infected humans, whose lymphocytes were used
to prepare human monoclonal antibodies, indicates that
the early antibody response may be directed towards DII
(51). If the early antibody response to DENV is similar,
then the primary humoral response will likely consist of
cross-reactive, non-neutralizing antibodies. It is also pos-
sible that upon secondary infection with a different
DENV serotype, there will be a rapid memory response
that consists of DENV cross-reactive antibodies due to
epitopes shared between DENV serotypes and the abun-
dance of memory B cells specific for DI/DII cross-reac-
tive epitopes. The theoretical possibility of ADE in post-
vaccinal DENV infections resulting in DHF/DSS dictates
that any vaccine candidate should best elicit only
serotype-specific virus-neutralizing antibodies against all
four serotypes, and therefore should be tetravalent, and
include viruses from all four DENV serotypes. Because
of this vaccine developers are creating tetravalent DENV
vaccines (2,17,26,31,50).

THE PLAQUE-REDUCTION
NEUTRALIZATION TEST

The PRNT measures the biological parameter of in
vitro virus neutralization and is the most virus-specific
serologic test among flaviviruses, and serotype-specific
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FIG. 3. Structure of the E glycoprotein homodimer. 
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test among DEN viruses, correlating well with serum lev-
els of protection from viral infection. Newer tests mea-
suring virus neutralization are being developed, but
PRNT remains the laboratory standard against which
these tests will need to be validated.

The virus PRNT assay was first described in the 1950s,
and was later adapted to DENV (43). The basic design
of the PRNT allows for virus-antibody interaction to oc-
cur in a test tube or microtiter plate, and then antibody
effects on viral infectivity are measured by plating the
mixture on virus-susceptible cells. The cells are overlaid
with a semi-solid medium that restricts spread of prog-
eny virus. Each virus that initiates a productive infection
produces a localized area of infection (a plaque), that can
be detected in a variety of ways. Plaques are counted and
compared with the starting concentration of virus to de-
termine the percentage reduction in total virus infectiv-
ity. In the PRNT, the serum specimen being tested is usu-
ally subjected to serial dilutions prior to mixing with a
standardized amount of virus. The concentration of virus
is held constant such that, when added to susceptible cells
and overlaid with semi-solid medium, individual plaques
can be discerned and counted. In this way, PRNT end-
point titers can be calculated for each serum specimen at
any selected percentage reduction of virus activity. A dis-
advantage of the PRNT is that it is labor intensive and
therefore not readily amenable to high throughput, mak-
ing it difficult to use for large-scale surveillance and vac-
cine trials.

TEST CONDITIONS FOR THE PLAQUE-
REDUCTION NEUTRALIZATION TEST

WITH DENGUE VIRUS

Cell lines and growth of viral stocks

DENVs grow in many different cell lines derived from
both vertebrate and invertebrate sources. The cell line
used for virus amplification needs to be coordinated be-
tween laboratories. Because DENV vaccines are targeted
for humans, and because the processing of the prM pro-
tein is altered in C6/36 mosquito cell–grown DENV, a
cell line of mammalian origin, such as the continuous
African green monkey–derived Vero cells is recom-
mended by the WHO to produce seed viruses and for use
in the PRNT for DENV. Because different passages and
clones of Vero cells may be phenotypically different, a
WHO-certified cell line is available. To avoid the prob-
lems of cell-culture adaptation of virus, low-passage virus
stock banks should be developed and employed for viral
growth. While the number of virus passages deemed to
be acceptable in the PRNT has never been experimen-
tally determined, using viruses with no more than 5–10
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cell-culture passages beyond the banking passage should
be attainable if the master and working seed stock ap-
proach is used.

The conditions for virus amplification/preparation
should be standardized with the use of an appropriate
multiplicity of infection (around 10�2 to 10�3). Virus
should be harvested during the middle to end of the ex-
ponential phase of growth, to avoid high concentrations
of inactivated particles in viral preparations. The super-
natant from infected cell cultures should be clarified by
low-speed centrifugation and stabilized with a cryo-pro-
tective agent (e.g., fetal calf serum �20%) before aliquot-
ing and storage of virus at �70°C. Lyophilization is an
alternative for long-term storage. Virus working banks
should be appropriately qualified for sterility (absence of
bacteria, fungi, and mycoplasma), potency (virus titration
on the cell line used for PRNT), and if possible identity
(using serotype-specific monoclonal antibodies).

Cell line for plaquing viruses

DENVs will plaque in a variety of cell lines. Currently
two mammalian cell lines are used most widely, Vero
cells or rhesus monkey kidney–derived LLC-MK2 cells.
Each of these cell types has advantages; however, a spe-
cific derivation of Vero cells has been evaluated and cer-
tified by the WHO for production of live-attenuated vac-
cines and for use in the PRNT. Master and working cell
banks should be prepared (as done for vaccine produc-
tion). Doing so will limit the number of passages and pre-
vent any drift of sensitivity to virus infection. Quality
control protocols for the cell banks that monitor sterility
(bacteria, mycoplasma, and fungi) and susceptibility of
cells to viral infection should be included.

Vero cell monolayers should be prepared 2–3 d before
use. Sub-confluent or just-confluent monolayers should
be used to avoid any alteration or loss of cells during the
course of the assay. Quality of the cell monolayer is crit-
ical for plaque development and therefore to generate ac-
curate results.

Viruses used in the test

Currently there are a variety of DENV strains on which
vaccine development or diagnostic testing is based. Table
1 lists the representative viruses from each serotype be-
ing used in tetravalent formulations by five different vac-
cine developers or diagnostic laboratories. Because the
well-established dengue laboratory strains used for PRNT
implementation were isolated many years ago and have
been amplified by several passages in mosquito or vari-
ous other cell lines, there is no clear rationale to choose
one set of viruses over another.

Plaquing efficiency is an important parameter in de-
termining PRNT results. Using virus stocks containing
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large amounts of inactive virions could result in falsely
low PRNT titers. There are a variety of ways to analyze
the contents of a viral preparation. These approaches in-
clude, but are not limited to: the quantization of viral ge-
nomic copies by RT-PCR; the quantization of the total
envelope protein mass (by ELISA or other methods); or
direct particle counting in an electron microscope. Each
of these techniques has limitations. The best practical ap-
proach to developing a virus stock with high ratio of in-
fectivity to particles is to carefully monitor the viral
growth conditions and harvest at the appropriate time
post-infection.

In the context of assessing vaccine immunogenicity
(i.e., serological surrogates of protection), it is advisable
to determine PRNT activity against a variety of virus
strains such as other wild-type or virulent viruses (low
passage virus or viruses isolated from human cases of
dengue fever or DHF), or recent viral isolates from dif-
ferent DEN-endemic areas (12, 31). These results should
be compared to PRNT results using the prototype labo-
ratory strain(s). This being said, there is little evidence
of antigenic drift within a given DENV serotype that
would result in a strain resistant to a post-vaccinal re-
sponse to that serotype. Ongoing comparisons of the DEN
E protein structure and cross-reaction analyses between
laboratory strains and recent field isolates should yield
helpful data to develop future recommendations. Regu-
latory authorities may also choose to specify other strains
that might be used in assays measuring vaccine-induced
immunity, in addition to the strains used currently by vac-
cine developers.

Media

Fetal calf or bovine serum should be used for virus and
cell growth, and for virus and sample dilutions should be
heat-inactivated at 56°C for 30 min, and used at a low
final concentration (2–5%) in the PRNT. The medium
used for cell growth should be compatible with the cell
type used. For Vero cells, minimal essential medium
(MEM), Dulbecco’s modified MEM (DMEM), M199, or
equivalent media are generally sufficient.

DENGUE VIRUS NEUTRALIZATION

PFU target and vessel size

The challenge virus dose and the number of repeats
tested for each dilution (serum or virus) are key factors
for achieving accurate measurements. The challenge dose
should be modified based on the surface area of the cell
monolayer (e.g., 6-well versus 24-well plates), to get
readily discernable plaques and minimize plaque over-
lap. The target number of plaques per well can vary by
virus strain, however 40–60 PFU per 35-mm dish should
permit accurate titrations while minimizing plaque over-
lap. Plaque overlap results from crowding of plaques in
an individual well. Comparing plaque counts in the test
system versus input virus that has been “back-titrated” is
the most acceptable way to rule out plaque overlap. In
order to reach an acceptable precision for the plaque
counts, it is recommended that at least three repeat wells
for a challenge dose of 50 PFU/reaction or less be used.

Specimen handling

The technique of heat inactivation at 56°C for 30 min
of serum specimens targeted for serological evaluation
was introduced to limit the effects that complement or
adventitious virus may have on the final results. This
practice is routine in most laboratories and should be em-
ployed. Filtration of serum specimens to remove partic-
ulates is not necessary. Neutralization of DENVs does
not require complement, so addition of exogenous
sources of complement to the PRNT is not necessary.

In functional assays intended to assess vaccinal im-
munogenicity, the serum sample dilution series for anti-
body titration should ideally start below the “seroprotective”
threshold titer. Regarding DENV-neutralizing antibodies,
the seroprotection threshold remains unknown, but nu-
merous laboratories in the context of vaccine immuno-
genicity assessment consider a seropositivity threshold to
be 1:10. A 1:5 starting dilution would be preferred over
1:10 in this context; however, that should be balanced
with the increased sample volume required for the test.

The number of dilutions can vary according to the ob-
jective of the testing. For screening purposes, sera can be
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TABLE 1. VIRUSES CURRENTLY USED IN DENV VACCINE DEVELOPMENT OR REFERENCE LABS

Vaccine developer or reference lab

Virus serotype 1 2 3 4 5

DEN1 Hawaii 16007 16007/PUO-359 West Pacific or PR94 West Pacific
DEN2 New Guinea C 16681 16681/PUO-218 New Guinea C or Tonga 74 S16803
DEN3 H87 16562 16562/PaH881/88 Sleman 78 CH53489
DEN4 H241 1036 1036/1228 814669 (Dominica/81) TVP360 or 341750
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processed using a dilution corresponding to the seropos-
itive threshold titer; however, the use of at least three di-
lutions is recommended due to possible cell toxicity or
presence of non-specific inhibitors of virus replication in
the first serum dilution. For end-point titration, two- to
fourfold serum dilutions should be used. These dilution
series lead to a more precise estimate of the end-point
titer than higher dilution factors. The number of dilutions
used depends on the dilution series and what is sufficient
to establish the end-point titer in post-vaccinal samples.
The appropriate dilution range can be previously deter-
mined by preliminary titration from 10-fold serum dilu-
tions.

Virus-antibody incubation periods

Antigen-antibody reactions are quite rapid, with a pe-
riod of 1–2 h at 37°C sufficient for the PRNT. Extend-
ing this period could result in partial virus inactivation.
An overnight incubation at 4°C is also acceptable; how-
ever, switching between a variety of incubation periods
within a given laboratory should be avoided.

Virus adsorption to cells and incubation of plates

Virus adsorption to Vero cells occurs rapidly at 37°C,
with 90% of the infectious virus attaching within the first
30 mins (11). Longer adsorption periods, while not nec-
essarily detrimental to infection, are not needed for max-
imal viral adsorption. It is important to ensure coverage
of the cell monolayer with media during viral adsorption.
This is accomplished by tilting the plates at recurring in-
tervals to ensure consistent media coverage of each well.
The days of incubation for the plaquing plates will de-
pend on the growth characteristics of the virus strains
used. Typically DENV requires 4–7 d for plaques to be
visible. Temperature of incubation for the plaquing plates
should be compatible with the cells used. For Vero and
LLC-MK2 cells, an incubation temperature of 37°C is
appropriate, although lower temperatures (e.g., 35°C) are
acceptable.

Overlay

In the case of conventional PRNT an overlay is added
onto the cell monolayer to limit the virus diffusion within
the plate and promotes plaque formation. The overlay can
be added to the cell monolayer either after aspiration of
the serum/virus mixtures, or without elimination of the
mixtures (e.g., yellow fever PRNT). The approach used
should be consistent and documented within each labo-
ratory. Semi-solid media such as carboxymethyl cellu-
lose (CMC), methylcellulose (MC), and agarose are 
acceptable. Lower-grade agar solutions may contain
charged inhibitors that may inhibit plaque formation. If

ROEHRIG ET AL.

these types of chemicals are used, they should first be
tested to determine the presence of such inhibitors. Since
the quality of the overlay medium is critical to ensure
data reliability, a new batch of commercial reagent should
be qualified by comparison with a previous batch for
plaque-forming efficacy. Selection of the overlay medium
is based on the techniques used for plaque visualization,
and whether or not the overlay must be removed for stain-
ing. In the latter case, CMC is used at 2–3% and MC is
used at 0.8–1.5% final concentration. Agarose solutions
are typically used at 1–2% final concentrations, and are
primarily used when plaques are visualized with a vital
dye such as neutral red. For flaviviruses, a two-overlay
approach is preferred. The first overlay is added after the
virus adsorption period, and does not contain neutral red.
After an appropriate growth period, a second overlay con-
taining 0.5% neutral red is added to visualize plaques.

Plaque visualization

Direct staining of cells. There are a variety of ways to
reveal plaques for enumeration in the conventional
PRNT. Cell coloration with vital dyes added in the first
or second overlay (such as neutral red) permits monitor-
ing of the development of viral plaques as uncolored
holes in the cell monolayer. However, this method has
some limitations. Neutral red is cytotoxic at high con-
centrations and light sensitive, therefore the dye concen-
tration in the overlay is necessarily limited, and plates
stained with neutral red should be kept in light-tight con-
tainers or incubators. This is especially important for the
single-overlay technique. Because of this the contrast be-
tween the colored cell monolayer and uncolored plaques
may be weak, and thus affects the accuracy of plaque
enumeration. On the other hand, keeping cells alive with
a neutral red overlay makes it possible to introduce flex-
ibility into incubation time that may sharpen plaques or
even bring out new plaques. Other dyes (such as amido-
black or crystal violet) can be used to improve the cell
monolayer staining and to allow possible automation for
counting plaques. These stains cannot be added directly
to the overlay and require overlay removal for staining.
Even though dying the cell monolayers requires an ad-
ditional coloration step after plaque development and be-
fore plaque counting, this approach has some other ad-
vantages: (1) the area of the cell monolayer required to
reach the minimal recommended plaque count can be re-
duced because of the increased capacity to visualize
smaller plaques; (2) the strong contrast between the cell
sheet and the clear plaque permits photographic capture
of plate images, and storage of images as raw data records
for compliance purposes; (3) chemical fixation of cells
inactivates DENV so the staining and counting steps can
be implemented under the biological safety level (BSL)
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1 containment (instead of BSL2 or BSL3 for dengue vac-
cine or wild-type viruses); and (4) plaques do not have
to be counted immediately.

Direct staining of viral plaques. Viral plaques can also
be immunostained using DENV-reactive polyclonal an-
tisera or monoclonal antibodies. Staining plaques with
DENV serotype-specific monoclonal antibodies allows
an additional identity test of the viral serotype used in
the assay. Immunostaining also permits the detection of
viruses that plaque poorly, or the use of cell lines in which
the virus does not demonstrate cytophathic effects (e.g.,
C6/36 cells). As with staining of the cell sheet with
amido-black or crystal violet, immunostaining requires
chemical fixation of cells that inactivates DENV. Subse-
quent counting can be implemented under BSL1 con-
tainment. Plaques do not have to be counted immediately,
and the strong contrast between the cell sheet and the
stained plaque permits photographic capture of plate im-
ages and storage of images as raw data records for com-
pliance purposes.

Counting plaques

Regardless of the method of visualization, plaques are
usually counted manually. Depending on the visualiza-
tion method, plaques can be counted immediately, or
later, as in the case of immunostaining or cell monolayer
coloration.

Data analysis

The criteria needed to validate an individual test are:
(1) integrity of uninfected cell monolayer control; (2) ap-
propriate plaque counts per well as determined by back-
titration of input virus; (3) little or no reduction in plaque
counts with negative serum control; (4) appropriate
PRNT titer of positive control sera; and (5) no serum tox-
icity observed with low serum dilutions.

PRNT end-point titers are expressed as the reciprocal
of the last serum dilution showing the desired percentage
reduction in plaque counts. A serum standard has been
evaluated by the WHO and is available; however, it has
never been characterized as a precise international stan-
dard, and at best serves as an internal positive control
specimen. Currently no international reference sera are
available for routine testing. The PRNT titer should be
calculated based on a 50% or greater reduction in plaque
counts (PRNT50). A PRNT50 titer is preferred over titers
using higher cut-offs (e.g., PRNT90) for vaccinee sera,
providing more accurate results from the linear portion
of the titration curve. However, PRNT50 titers are more
variable. The more stringent PRNT90 titers are more use-
ful in DENV-endemic areas for epidemiological studies
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or diagnostic purposes, by decreasing the background
serum cross-reactivities among flaviviruses.

There are several ways to calculate PRNT titers. The
simplest and most widely used way to calculate titers is
to count plaques and report the titer as the reciprocal of
the last serum dilution to show �50% reduction of the
input plaque count as based on the back-titration of in-
put plaques (see above). One area for titer variability be-
tween labs is whether or not the dilution made by mix-
ing virus and antibody dilution (usually in a 1:1 volume
ratio, resulting in a further1:2 dilution of antibody) is in-
cluded in the final titer calculations. Because there is no
consistency in whether the 1:2 antigen:antibody dilution
is included in the final titer, reporting of the data should
explicitly state how this dilution was handled. Use of
curve-fitting methods from several serum dilutions may
permit calculation of a more precise result. There are a
variety of computer analysis programs available for this
(e.g., SPSS or GraphPad Prism). That being said, con-
sistency in the interpretation method is as important as
the method chosen for analysis.

NEW TESTS TO MEASURE 
VIRUS NEUTRALIZATION

Modifications in the standard PRNT assays are being
investigated to shorten the incubation period required to
see plaques, stain infected cell cultures to enhance plaque
visibility, eliminate the plaque enumeration step, or re-
duce or eliminate the reliance on cell culture. Any new
approach to assessing virus-neutralizing antibodies will
have to be validated against the standard PRNT, as out-
lined in this document, so that the relationship and equiv-
alence of the new and old test is fully understood. The
first modification in the PRNT is the reduction of the size
of vessel used for plaquing; 24-well plates seem to be the
smallest reasonably sized vessel for plaquing when con-
ventional cell staining techniques are used.

Immunostaining of virus-infected cells, instead of di-
rectly staining cells with histochemical stains or vital
dyes, offers some advantages over these standard proce-
dures. Immunostaining relies on adding enzyme-conju-
gated antiviral antibody (direct test) or non-conjugated
antiviral antibody (later detected with an enzyme-conju-
gated anti-species antibody indirect test) to virus-infected
cell cultures. The binding of the enzyme conjugate to the
cell sheet is detected with an immunohistochemical stain
specific for the enzyme used (usually horseradish perox-
idase or alkaline phosphatase). The availability of DEN
virus serotype-specific monoclonal antibodies permits
enumeration of plaques within complex mixtures of
serotypes using this approach. While using mixtures of
DEN viruses in this way may reduce the total number of
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plates needed to quantitate virus plaques, issues of plaque
overlap still need to be considered. Use of immuno-
chemical staining, which results in signal amplification
because of the presence of the enzyme-conjugate, may
also facilitate identification of plaques at an earlier stage
post-infection, resulting in reduced plaquing incubation
times.

Perhaps the most promising technique is to quantitate
infectious virus using small numbers of virions and a 96-
well plate format (micro-neutralization assay) (52). In
this assay, individual plaques are not enumerated, but
rather the viral growth measured in any given well is re-
lated to the optical density observed in that well using a
soluble enzyme substrate. The most difficult parameters
to control using this assay design are determining the ap-
propriate amount of input virus and the incubation times
between virus infection and ELISA detection. Since vi-
ral spread is not limited by semisolid overlays, waiting
too long before staining can result in overgrowth of virus.
Since not all viruses grow at the same rate, the incuba-
tion periods will be virus-specific. Standardizing this as-
say for four virus serotypes is possible; however, if cross-
reactivities need to be measured against a variety of viral
isolates, the task becomes more difficult. It is also pos-
sible to convert this assay from an immunochemical as-
say to a nucleic acid detection assay. In this way, viral
RNA produced by non-neutralized virus can be detected
in a quantitative assay (from culture supernatants and/or
cell monolayers). The issues of input virus and time of
incubations are still relevant for this process.

Another new approach to measuring virus-neutralizing
antibodies is to dispense with virus completely and use
an “infectious” vector that expresses the E protein or
E/prM proteins with or without genes that encode “re-
porter” molecules (38). These assays are based on the ob-
servation that essentially all virus-neutralizing antibodies
are elicited by the E protein. A variety of reporter mol-
ecules (e.g., green fluorescent protein) can be used to de-
tect residual “virus” activity. However, such approaches
suffer the same drawbacks as the micro-neutralization as-
says. In addition, this system requires the construction of
a new vector for each strain to be tested.

SUMMARY

The levels of flavivirus-neutralizing antibody titers in the
serum of vaccinated or infection-immune individuals cor-
relates best with protection from subsequent viral infection.
However, the lack of a standardized PRNT poses a hurdle
for comparing data between vaccine trials and testing lab-
oratories, and defining a threshold value to use as a true
serological correlate of protection. The purpose of these
guidelines is to: (1) provide scientific insight into the biol-
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ogy of the flavivirus neutralization test; (2) provide guide-
lines for test coordination; and (3) provide minimal rec-
ommendations for a test protocol for laboratories that might
be interested in establishing the test. It must be remembered
that the PRNT is above all a biological assay, and as such
will always have a certain degree of inter-laboratory vari-
ation. Due to this and other lab-to-lab variability, such as
specific vaccine design approaches, strains used for vac-
cine development, and other unique manufacturing re-
quirements, these guidelines will not mandate the use of a
single standardized protocol. Ultimately, the definition of
a protective level of vaccine-induced neutralizing antibody
by whatever suitable assay will need to be validated in a
vaccine efficacy trial. Standardization of the procedure us-
ing appropriate reference material, followed by each labo-
ratory’s own qualification and validation, may result in bet-
ter inter-laboratory comparisons of results. These guidelines
outline the variables that are important to consider in per-
forming this biological assay, and suggest a procedure that
can be used by those laboratories interested in using the
PRNT. It is important to note that virus-neutralizing anti-
body titer, as determined by the PRNT, is considered to be
the best immune correlate of protection for flaviviral in-
fections. The fact remains, however, that a true definition
of protective levels of vaccine-induced DENV-neutralizing
antibody will require vaccine-efficacy trials using fully val-
idated assays.
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