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A B S T R A C T

Papillomaviruses (PVs) cause disease in both dogs and cats. In dogs, PVs are thought to cause oral
papillomatosis, cutaneous papillomas and canine viral pigmented plaques, whereas PVs have been rarely
associated with the development of oral and cutaneous squamous cell carcinomas in this species. In cats,
PVs are currently thought to cause oral papillomas, feline viral plaques, Bowenoid in situ carcinomas and
feline sarcoids. Furthermore, there is increasing evidence that PVs may also be a cause of cutaneous
squamous cell carcinomas and basal cell carcinomas in cats. These diseases are discussed in this review.
Additionally, there is a brief overview of PV biology, including how these viruses cause disease. Diagnostic
techniques and possible methods to prevent PV infection are also discussed.
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Introduction

Warts have been recorded in folk-lore for centuries in human
beings. A viral cause of warts was confirmed in 1907 and the first
human papillomavirus (PV) was fully sequenced in 1982 (Danos
et al., 1982). The first evidence that PVs can cause cancer was
reported from studies in rabbits in 1935 (Rous and Beard, 1935).
This was followed in 1981 by the breakthrough demonstration that
PVs cause the majority of human cervical cancers (zur Hausen
et al., 1981). Subsequent research has expanded the range of
human cancers that can be caused by PV infection and it is
currently estimated that around 5% of all human cancers are due to
PV infection (Parkin, 2006).

In dogs, transmissible warts were first noted in 1898, with a
viral aetiology confirmed in 1959 (Nicholls and Stanley, 1999). By
using light and electron microscopy, evidence of a PV aetiology was
suggested in 1969 and the first canine PV was fully sequenced in
1994 (Delius et al., 1994). In contrast, since PVs only rarely cause
papillomas in cats, the first evidence of PV-induced disease in this
species was not reported until 1990 (Carney et al., 1990), with the
first PV from domestic cats being fully sequenced in 2002 (Tachezy
et al., 2002; Terai and Burk, 2002).

In the years since these initial studies of PVs, additional PV
types have been identified and PVs have been associated with an
expanded range of canine and feline diseases. In addition, it is now
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accepted that host factors play a significant role in determining
whether or not a PV will cause clinically relevant disease. This
review provides a general overview of the biology of PVs and the
mechanisms by which they cause disease, followed by a detailed
discussion of the diseases of dogs and cats that are currently
associated with PV infection. The different methods that can be
used to diagnose PV-induced disease will be outlined and, for each
distinct disease, the clinical presentation, histopathology, progno-
sis and treatment are described. Lastly, will be a brief discussion of
the possible ways that could be used to prevent diseases due to PVs
in dogs and cats.

Papillomavirus biology

Papillomaviruses are small, non-enveloped, icosahedral viruses
that infect the stratified squamous epithelium of many mammali-
an, as well as some avian and reptilian, species. Their circular
double stranded DNA genome is around 8000 base pairs long and
includes five or six early (E) and two late (L) open reading frames
(ORF) (Munday and Pasavento, 2017). Papillomaviruses are
classified using the L1 ORF sequence. Papillomaviruses within
the same genus have greater than 60% L1 ORF similarity and
typically demonstrate similar host, location and behavioural
characteristics. Different papillomavirus types have less than
90% similarity in their L1 ORF (Bernard et al., 2010).

Currently, 18 Canis familiaris papillomavirus (CPV) types have
been fully sequenced and classified as Lambapapillomaviruses,
Taupapillomaviruses and Chipapillomaviruses (Delius et al., 1994;
Tobler et al., 2006, 2008; Yuan et al., 2007, 2012; Lange et al., 2009a,
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Table 1
Summary of papillomaviruses that have been detected in dogs and cats, and their predominant associated lesions.

Species Papillomavirus genus Papillomavirus types Predominant associated lesions

Dog Lambda CPV-1 and 6 Oral papillomas
Cutaneous papillomas

Tau CPV-2, 7, 13, 17 and 19 Cutaneous papillomas
Oral SCC

Chi CPV-3, 4, 5, 8, 9, 10, 11, 12, 14, 15 and 16 Viral pigmented plaques
Cutaneous SCC

Cats Lambda FcaPV-1 Oral papillomas
Dyotheta FcaPV-2 Viral plaques/BISC

Cutaneous SCC
Unclassified FcaPV-3 and 4 Viral plaques/BISC

Basal cell carcinoma
Delta BPV-14 Feline sarcoids

CPV, canine (Canis familiaris) papillomavirus FcaPV, feline (Felis catus) papillomavirus; BPV, bovine papillomavirus; SCC, squamous cell carcinoma; BISC, Bowenoid in situ
carcinoma.
It should be noted that not all papillomavirus types within a genus will cause all the associated lesions listed. For example, CPV-17 is the only canine Taupapillomavirus type
associated with oral SCCs and only CPV-2 and CPV-7 have been associated with cutaneous papillomas.
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2012a, b, 2013; Luff et al., 2012a, 2015; Zhou et al., 2014, 2015;
Munday et al., 2016b; Tisza et al., 2016; Table 1). Four Felis catus
(FcaPV) types have been fully sequenced, including one that has
been classified as a Lambdapapillomavirus and one as a Dyothe-
tapapillomavirus, while two PV types remain unclassified (Tachezy
et al., 2002; Terai and Burk, 2002; Lange et al., 2009b; Munday
et al., 2013a; Dunowska et al., 2014). However, short sequences of
additional PV types have been amplified from dogs and cats,
suggesting that new PV types are likely to be recognised from both
species in the future. While bovine Deltapapillomavirus is an
important exception, PVs are typically highly species specific
(Sundberg et al., 2000).

Papillomaviruses are primarily spread by direct contact,
although indirect spread is also possible due to their ability to
survive in the environment (Roden et al., 1997). Once the PV comes
into contact with a mucocutaneous epithelium, the presence of
microabrasions allows infection of basal cells, resulting in the
production of small numbers of circular PV DNA copies (episomes)
within the cell (Schiller et al., 2010). These episomes are
maintained in the basal cells as they replicate, providing a
reservoir of infection. However, the viral life-cycle is only
completed when an infected cell undergoes terminal differentia-
tion (Doorbar, 2005). Keratinocyte differentiation results in the
expression of PV E6 and E7 proteins that promote replication of the
normally post-mitotic suprabasal cell and allow large-scale
amplification of the viral genome (Doorbar et al., 2012). Expression
of the PV capsid proteins (L1 and L2) and viral assembly occurs as
the infected cell reaches the upper epithelium. Papillomavirus-
laden mature keratinocytes are sloughed from the epithelial
surface with the subsequent rupture of these cells, releasing
infectious virions (Doorbar et al., 2012). Bovine Deltapapillomavirus
is unique because this group of PVs can also infect mesenchymal
cells, although these cells probably do not permit viral replication
(Jelinek and Tachezy, 2005).

The clinical presentation of a PV infection is largely determined
by the degree of cell proliferation induced by the PV. Most PV types
only mildly increase cell proliferation and PV replication occurs
slowly in the absence of any visible lesions (Doorbar et al., 2012).
Alternatively, a minority of PV types markedly increase cell
replication, resulting in rapid production of large numbers of viral
particles. Such infections cause marked epithelial hyperplasia that
is visible clinically as a papilloma (wart) (Munday, 2014a).

Since the majority of viral replication occurs in the external
epithelial layers in the absence of cell lysis, PV infections often only
illicit a weak host immune response (Doorbar, 2006). However,
when an immune reaction occurs, the response can be subdivided
into humoral and cell-mediated immunity. The production of
circulating IgG antibodies blocks entry of the PV into the basal cells,
preventing further infections by this PV type, although antibodies
do not influence resolution of an established PV infection (Nicholls
et al., 1999; Ghim et al., 2000). The development of a cell-mediated
response results in the resolution of established infections (Egawa
and Doorbar, 2017). Since there is significant intra-individual
variation in the time taken by the body to mount a cell-mediated
response, there is also variation in the time taken to resolve a
clinically visible papilloma. As discussed later, resolution may also
be delayed in immunosuppressed animals.

In most dogs and cats, infection with PVs is inapparent (Munday
and Witham, 2010; Lange et al., 2011; Thomson et al., 2015). These
infections usually do not result in clinically visible epithelial
hyperplasia because the immune system is able to prevent the PV
from markedly changing normal epithelial cell regulation (Egawa
and Doorbar, 2017). However, if changes in the host allow greater
PV protein expression, the resultant epithelial hyperplasia can
produce a lesion. Currently, the host factors that determine
whether or not PV infection will cause a visible hyperplastic lesion
are poorly understood. However, immunosuppression appears to
predispose to the development of some PV-induced lesions (Callan
et al., 2005) and the increased frequency of pigmented plaques in
certain breeds of dog (Narama et al., 2005; Luff et al., 2016)
suggests that genetic factors may also influence whether a PV
infection remains asymptomatic or results in clinical disease.

In human beings, the major significance of PVs is the ability of
PVs in the high risk Alphapapillomavirus group to cause cervical,
other anogenital and oral cancer (zur Hausen, 2009). An important
process in PV-induced cancer is the accidental integration of the PV
E6 and E7 genes into the host DNA, resulting in rapid, uncontrolled
cell growth, inhibition of apoptosis, loss of telomerase and
disruption of processes that ensure accurate assembly of replicated
host DNA (Doorbar et al., 2012). These rapidly dividing, genetically
unstable cells quickly accumulate additional mutations, resulting
in malignant progression (Pett et al., 2004).

Whilst there is accumulating evidence that PVs may cause
cancer in dogs and cats (Munday and Kiupel, 2010; Munday et al.,
2011d; Munday, 2014b; Altamura et al., 2016b; Luff et al., 2016;
Thomson et al., 2016), the precise functions of the canine and feline
PV E6 and E7 proteins have not been fully determined. Further-
more, some neoplasms have been shown to contain productive
infections, suggesting that the PV DNA may not be integrated in the
host DNA (Munday et al., 2015d; Thomson et al., 2016). Therefore,



Fig. 2. Inverted papilloma from dog. Papillomaviral replication in a lesion can be
detected histologically by the presence of papillomavirus-induced cell changes.
Visible in this papilloma are numerous enlarged keratinocytes that contain
increased quantities of blue fibrillary material. Additionally, rare cells with
shrunken nuclei surrounded by a clear cytoplasmic halo (koilocytes) are visible
(arrows). Scale bar = 20 mm. Haematoxylin and eosin.
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additional research is required to define the precise role that PVs
have in the development of cancer in dogs and cats.

Diagnosis of papillomaviral disease

Oral and cutaneous warts are the most frequent manifestation
of PV disease in dogs and the majority of these cases can be
diagnosed clinically. Whilst feline oral papillomas likewise have a
typical clinical presentation, they may not be recognised due to
their rarity. Due to variation in the clinical presentation of the
remainder of the PV-induced lesions, histopathology is recom-
mended to allow definitive diagnosis.

Since PVs complete their life cycle by promoting proliferation of
epithelial cells, histology of a PV-induced lesion will reveal
thickening of the epithelium. If the PV induces marked prolifera-
tion of epithelial cells, this can cause folding of the thickened
epithelium and a papilloma (Fig. 1). Papillomaviruses that only
mildly promote epithelial replication contain more moderate
epidermal thickening that typically appears as a raised plaque. The
presence of viral replication within a lesion may be visible
histologically as PV-induced cell changes that could include
enlarged cells with a shrunken nucleus surrounded by a clear
cytoplasmic halo (koilocytes), cells with increased quantities of
grey or blue fibrillary cytoplasm, cells with intracytoplasmic
inclusions or cells with enlarged vesicular nuclei (Fig. 2). Intra-
nuclear inclusions can be visible, although these can be transient
and difficult to differentiate from nucleoli. Clumping of kerato-
hyalin granules in the granular cell layer is also often present
within PV-induced lesions.

Generally, lesions with more marked epithelial proliferation,
such as papillomas, support greater viral replication and are more
likely to contain PV-induced cell changes. In contrast, lesions with
more modest epithelial proliferation (such as a viral plaque)
contain less viral replication and only variably contain PV-induced
cell changes. The presence of PV-induced cell changes within a
lesion does not necessarily prove that the lesion was caused by PV
infection. However, PV-induced changes do confirm that the lesion
contains viral replication and therefore suggest that the normal
behaviour of cells has been influenced by the PV. The histological
features of each PV-induced disease are described in more detail
below.
Fig. 1. Inverted papilloma from a dog. Since papillomaviruses promote their
replication by increasing proliferation of epithelial cells, some papillomaviral
infections can result in marked epithelial hyperplasia. If this hyperplasia causes
folding of the epidermis, an exophytic or endophytic papilloma can develop. Scale
bar = 100 mm. Haematoxylin and eosin.
Immunohistochemistry to detect L1 protein production can
be used to investigate a PV aetiology of a lesion. However, since
the L1 protein is only produced late in the PV life cycle,
immunostaining is restricted to lesions that contain active viral
replication (Longworth and Laimins, 2004). In addition, since
specific antibodies against canine and feline PVs are not
available, some PV types may not be detectable. In human
beings, immunohistochemistry to detect p16CDKN2A protein
(p16) is used as a marker for a PV aetiology in some lesions
(Smeets et al., 2007). This protein is increased because most
PVs promote cell replication by degrading retinoblastoma
protein (pRb), a change which subsequently increases p16
(Parry et al., 1995). Unlike PV immunostaining, p16 immuno-
staining therefore detects an effect of PV infection rather than
the presence of PV L1 protein in the lesion. Additionally, p16
immunostaining will be increased even if no viral replication is
present. Furthermore, human anti-p16 antibodies have been
validated for use in dogs and cats. Whilst p16 immunostaining
has been associated with PV infection in both dogs and cats,
and FcaPV-2 has been shown to degrade pRb (Munday et al.,
2011a, 2015d; Munday and Aberdein, 2012; Altamura et al.,
2016b), it is currently uncertain whether all canine and feline
PVs degrade pRb. Additionally, since other causes of pRb
dysfunction have been shown to increase cell p16 in human
cancers, it is possible that increased cell p16 can be present in
some non-PV-induced lesions in dogs and cats.

Using PCR, it is possible to detect very small quantities of PV
DNA within a lesion, even in the absence of PV replication. The use
of consensus primers even allows the amplification of DNA from
PV types that have not previously been reported. In addition to
conventional PCR, reverse transcriptase PCR can be used to detect
PV gene expression. Detecting PV RNA suggests that the PVs are
producing proteins and therefore are able to influence cell growth
and differentiation. In situ hybridisation techniques can also be
used to localise either PV DNA or RNA within a lesion. Whilst
molecular techniques are useful to detect PV DNA within a
sample, PVs are a common commensal of the skin and oral cavity
of dogs and cats, so detection of PV DNA within a lesion does not
prove causality. Therefore, PCR-based molecular techniques are
better suited for research rather than for routine diagnostic
testing.
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Papillomaviral diseases of dogs

Oral papillomatosis

Oral papillomas caused by CPV-1 (formerly referred to as canine
oral PV) are common in young dogs (Lange and Favrot, 2011). The
epidemiology of infection by CPV-1 is poorly understood. There are
anecdotal reports of outbreaks of canine oral papillomatosis,
suggesting that the disease can be acquired through contact with
affected dogs. However, since dogs are commonly infected
inapparently by CPV-1, avoiding dogs with papillomas may not
be sufficient to prevent disease (Lange et al., 2011). The
development of oral papillomatosis results in the development
of antibodies that prevent new infections by CPV-1. However, it is
probable that some dogs remain inapparently infected by CPV-1
following resolution of the initial papillomas (Doorbar et al., 2012).
Reports of papillomatosis in older immunosuppressed dogs are
consistent with reactivation of inapparent infection (Sundberg
et al., 1994; Radowicz and Power, 2005). Oral papillomatosis
presents as multiple exophytic vegetative warts involving the lips
and oral cavity (Lange and Favrot, 2011; Fig. 3). Most dogs do not
show any systemic signs of disease, although there are rare reports
of extensive disease that interferes with eating or respiration
(Nicholls et al., 1999). Histopathology reveals an exophytic mass
comprised of thickened folded epithelium, often with numerous
PV-induced cell changes.

The overwhelming majority of canine oral papillomas sponta-
neously regress and surgical excision is rarely necessary. Regres-
sion is due to the development of a cell-mediated immune
response. In experimentally induced papillomas, resolution
typically occurs within 8 weeks. However, resolution of natural
papillomas appears to be more variable, with resolution taking up
to 12 months in some dogs (Sancak et al., 2015).

Numerous treatments to hasten the resolution of oral papillo-
mas have been proposed, but most have not been assessed in
appropriate studies. However, in a prospective, randomised,
double-blinded placebo-controlled study of 17 dogs with papillo-
mas, lesion regression was observed within 50 days in all 10 dogs
that were treated with azithromycin, but only 1/7 untreated dogs
(Yagci et al., 2008). Stimulating antibody production is not
expected to influence lesion regression and papilloma regression
was not observed in a dog that received both viral capsid and
Fig. 3. Oral papillomatosis in a dog. This disease is characterised by the presence of
numerous exophytic vegetative growths involving the lips and mouth. This dog also
has cutaneous papillomas involving the skin surrounding the mouth (photograph
courtesy of Dr Stephen White, University of California Davis, California, USA).
autologous vaccines, despite the dog developing raised antibody
titres (Nicholls et al., 1999).

There are rare reports both of persistent and of repeatedly
recurrent oral papillomas; these are thought to develop due to an
ineffective cell-mediated immune response against PV-infected
cells (Nicholls et al., 1999). Most dogs do not have any other
detectable signs of immunosuppression, suggesting an immune
deficiency that is specific to PVs. These dogs can develop extensive
papillomatosis and may be predisposed to oral squamous cell
carcinoma (SCC) (Regalado, 2016). It is suggested that a guarded
prognosis should be given to dogs that have papillomas for longer
than 18 months.

Cutaneous papillomas

Canine cutaneous papillomas have been associated with CPV-1,
2, 6 and 7 (Sundberg et al., 1994; Yuan et al., 2007; Lange et al.,
2009a). Most develop in young dogs, presumably at the time of first
infection by the causative PV. Cutaneous papillomas can be single
or multiple. They can occur anywhere on the body, but are most
common on the face, ears and extremities (Gross et al., 2005;
Fig. 4). Both the presence of a skin abrasion and exposure to the
relevant PV type currently appear to be important for papilloma
development (Debey et al., 2001; Munday et al., 2010a).

Histologically, papillomas can be subdivided into exophytic
papillomas, in which the folded epidermis protrudes above the
surface of the skin, and inverted papillomas, in which the folded
epithelium is contained within a depressed cup-shaped structure
(Campbell et al., 1988; Munday and Pasavento, 2017). Papilloma-
virus-induced cell changes are typically frequent in both subtypes.
Spontaneous resolution is expected, although persistent papillo-
mas have been observed rarely and progression of CPV-2-induced
inverted papillomas to SCCs was reported in multiple dogs in a
research colony of immunocompromised dogs (Goldschmidt et al.,
2006).

Cutaneous viral pigmented plaques

Canine pigmented plaques are associated with a number of
closely related Chipapillomavirus types (Tobler et al., 2006, 2008;
Lange et al., 2009a, 2012b; Luff et al., 2012a, b, 2015; Yuan et al.,
2012; Zhou et al., 2014). It is likely that dogs are often
asymptomatically infected by these PV types, but only develop
Fig. 4. Cutaneous papillomas on a dog. Papillomas frequently develop around the
ears, possibly secondary to self-trauma caused by scratching in this area
(photograph courtesy of Dr Stephen White, University of California Davis, California,
USA).
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plaques when host factors allow increased PV replication. The role
of the host in disease development is illustrated by the
predisposition to plaques observed in dogs receiving immunosup-
pressive therapy and in pug dogs (Narama et al., 2005). However,
since pigmented plaques also occur in dogs of other breeds without
any identifiable immunosuppressive disease, the precise host
factors that allow plaque formation are unknown.

Plaques are typically dark, multiple, and 1–10 mm in diameter.
They are most common on the ventrum and medial aspects of the
limbs (Gross et al., 2005; Munday et al., 2011d; Fig. 5).
Histopathology reveals moderate epidermal acanthosis, hyperker-
atosis, a typical scalloped appearance of the skin surface, and
prominent epidermal and dermal melanin pigmentation. Pig-
mented plaques can contain viral replication (Lange et al., 2013)
and PV-induced cell changes and PV immunostaining are variably
present.

Pigmented plaques can spontaneously regress, persist or
progress to involve extensive areas of the skin. Generally,
pigmented plaques are considered to be cosmetically undesirable,
but do not have a negative impact on health. However, pigmented
plaques rarely have been reported to undergo malignant transfor-
mation to an invasive SCC (Munday et al., 2011d; Luff et al., 2015,
2016). Although malignant transformation has only been reported
in plaques that were associated with CPV-9, 12 and 16, the small
number of published cases suggests that malignant potential
cannot be excluded for plaques caused by other PV types.

Dogs with pigmented plaques should be assessed to exclude
any underlying immunosuppressive disease. Whilst treatment is
often not required, surgical excision of small numbers of plaques is
possible. A dog with numerous viral plaques was reported to be
successfully treated using laser therapy (Knight et al., 2016).
Plaques should be observed carefully for any evidence of malignant
transformation.

Squamous cell carcinomas

Whilst PV DNA has been detected in canine cutaneous SCCs
(Zaugg et al., 2005), currently there is no evidence that PVs are a
frequent cause of these cancers (Waropastrakul et al., 2012;
Munday et al., 2013c; Sabattini et al., 2016). CPV-17 was detected in
multiple oral papillomas that progressed to SCCs in a dog (Munday
et al., 2016b). However, most canine oral SCCs do not contain
Fig. 5. Pigmented plaques on a dog. Numerous plaques are visible on the ventrum
and legs of this dog. The plaques are dark and are covered by keratin scale
(photograph courtesy of Dr Mark Turnwald, Belmont Veterinary Clinic, North Shore
City, New Zealand).
detectable PV DNA suggesting that the majority are not caused by
PV infection (Porcellato et al., 2014; Munday et al., 2015b).

Papillomaviral diseases of cats

Oral papillomas

Feline oral papillomas are caused by FcaPV-1 (Munday et al.,
2015a). Whilst oral papillomas have been reported rarely in cats,
the true incidence is unknown, since the majority of these lesions
probably spontaneously resolve without causing clinical signs of
disease. Papillomas present as a cluster of small exophytic masses
on the ventral surface of the tongue (Sundberg et al., 2000).
Histologically, they are typical exophytic papillomas that contain
prominent PV-induced cell changes, including characteristic
eosinophilic intracytoplasmic inclusions. Although feline oral SCCs
can also develop on the ventral surface of the tongue, there is no
evidence that oral papillomas progress to SCCs in cats (Munday and
French, 2015).

Viral plaques and bowenoid in situ carcinomas

Viral plaques and Bowenoid in situ carcinomas (BISCs) are most
often caused by FcaPV-2 (Munday et al., 2007; Lange et al., 2009b
Munday and Peters-Kennedy, 2010). Most cats are infected with
this PV and infection is thought to occur shortly after birth due to
shedding of the virus from the queen (Thomson et al., 2015). Since
infection is common, but clinical disease is rare, it appears that
host factors are important in disease development due to FcaPV-2.
Whether immunosuppressed cats are predisposed is uncertain,
since viral plaques and BISCs often develop in cats without any
immunosuppressive disease. Currently, the changes in the host
that allow disease development are poorly understood.

Feline viral plaques and BISCs traditionally have been classified
as separate disease entities. However, since both are typically
caused by FcaPV-2 and since transitional lesions between viral
plaques and BISCs have reported (Wilhelm et al., 2006), they
probably represent different severities of the same disease process.
Lesions are often multiple and most frequently develop on the
head and neck of cats. Viral plaques are typically mildly raised,
hairless and less than 1 cm in diameter, whilst BISCs tend to be
larger and can be ulcerated or covered by thick scaling (Wilhelm
et al., 2006; Munday et al., 2016a; Figs. 6 and 7). Both lesions are
often pigmented.

Histological examination of a feline viral plaque reveals a well-
demarcated focus of mild epidermal hyperplasia that often
contains prominent PV-induced cell changes. Viral plaques rarely
may contain foci of sebaceous gland hyperplasia (Munday et al.,
2017c). In comparison, BISCs exhibit more marked epidermal
hyperplasia, which often extends into follicular infundibula and
can result in a nodular mass that bulges into the underlying
dermis (Gross et al., 2005). Cellular atypia and crowding is
present with groups of basal cells having nuclei that are
dorsoventrally elongated, resulting in a ‘windblown’ appearance.
Papillomavirus-induced cell changes may be visible; however, the
changes become less common as dysplasia increases (Wilhelm
et al., 2006).

Viral plaques and BISCs can spontaneously resolve, be present
persistently without progressing or slowly increase in size and
number. In addition, BISCs are pre-neoplastic and all BISCs should
be carefully monitored for progression to a SCC. Bowenoid in situ
carcinomas in Devon Rex and Sphinx cats appear to be predisposed
to rapid progression and the resultant invasive SCCs also
demonstrate high metastatic potential. High FcaPV-2 copy
numbers and p16 protein immunostaining are detectable within
the metastatic lesions, suggesting that the PV infection could have



Fig. 7. Bowenoid in situ carcinoma on a cat. This Devon Rex cat developed multiple
pigmented, raised, ulcerated lesions that were covered by a layer of keratin. Feline
Bowenoid in situ carcinomas can develop anywhere on the cat, but are often are
more frequent dorsally on the head and neck (photograph courtesy of Dr Linda
Vogelnest, Small Animal Specialist Hospital, New South Wales, Australia).

Fig. 6. Feline viral plaque. Plaques most frequently appear as single, focal, slightly
raised lesions that often develop around the face of cats. Feline viral plaques and
Bowenoid in situ carcinomas appear to be different severities of the same disease
process, with viral plaques representing the more mild manifestation of the disease
(photograph courtesy of Dr Sharon Marshall, Veterinary Associates, Hastings, New
Zealand).
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contributed to malignant progression (Ravens et al., 2013; Munday
et al., 2016a).

Surgical excision of a viral plaque or BISC is expected to be
curative, although additional lesions may subsequently develop at
different locations. In cases in which the large size and number of
lesions make surgical excision impractical, imiquimod cream has
been suggested as a topical therapy. Topical imiquimod may
promote cell-mediated immunity by locally increasing a-interfer-
on and tumour necrosis factor-a (Miller et al., 1999), and has been
used to treat genital papillomas in humans. In an uncontrolled
study of 12 cats with BISCs, imiquimod resulted in partial
resolution of a lesion in all cats and complete remission of at
least one BISC was observed in five cats (Gill et al., 2008). However,
significant side effects were reported, including local erythema in
five cats and systemic toxicity in two cats. Additional controlled
studies are required to determine the efficacy and safety of this
treatment for BISCs in cats.
Squamous cell carcinomas

Papillomaviruses were first associated with feline cutaneous
SCCs in 2008, when FcaPV-2 DNA was amplified significantly more
frequently from SCCs than from non-neoplastic skin samples
(Munday et al., 2008). Subsequent evidence that FcaPV-2 may be
causally associated with SCCs includes the presence of increased
p16 and decreased pRb in SCCs that contain FcaPV-2 DNA, and
evidence that SCCs that contain PV DNA have a different biological
behaviour to those that do not contain PV DNA (Munday et al.,
2011b, 2013b). Furthermore, FcaPV-2 RNA can be detected within a
proportion of SCCs, and the transforming properties of the
corresponding proteins have been demonstrated in cell culture,
confirming that the virus has the potential to influence cell
behaviour and to contribute to oncogenesis (Altamura et al., 2016a,
b; Thomson et al., 2016).

An association with PV infection is observed most frequently in
SCCs that develop in areas of the body protected from UV light,
such as haired or pigmented skin (Munday et al., 2011b). However,
PV DNA and p16 immunostaining are also detectable in a
proportion of SCCs from sun-exposed skin, suggesting that PVs
could also act as a co-factor with UV light (Munday and Kiupel,
2010; Altamura et al., 2016b). A PV aetiology may also be more
likely for SCCs that have an exophytic component (Munday et al.,
2017b). Whilst the precise role of the PV is currently uncertain,
FcaPV-2 may influence the development of 33–45% of feline
cutaneous SCCs (Munday et al., 2011b; Thomson et al., 2016).

Cutaneous SCCs do not have histological evidence of PV
infection. They are typically highly infiltrative neoplasms that
can be difficult to excise surgically and, whilst SCCs are generally
slow to metastasise, they can cause significant disease due to the
local effects of the neoplasm. While PV DNA is detectable in a small
proportion of feline oral SCCs, there is no evidence that PVs are a
significant cause of these neoplasms (Munday et al., 2009, 2011c;
O’Neill et al., 2011; Munday and French, 2015; Altamura et al.,
2016b).

Basal cell carcinomas

An association between cutaneous basal cell carcinomas (BCCs)
and PVs was first proposed after BISC-like changes were observed
in the epidermis overlying some BCCs (Gross et al., 2005).
Subsequently, BCCs containing PV-induced cell changes and PV
DNA have been reported, suggesting that some BCCs may be caused
by infection by non-FcaPV-2 types (Munday et al., 2017a).

Feline sarcoid

Feline sarcoids are most likely to be caused by “dead end” cross-
species infection by bovine papillomavirus (BPV)-14 (Munday
et al., 2015c). Evidence of a role for this PV includes the consistent
detection of the PV in feline sarcoids, but not any non-sarcoid feline
sample (Munday et al., 2010b). BPV-14 is a Deltapapillomavirus that
is closely related to the BPVs that cause equine sarcoids.
Unsurprisingly, feline sarcoids are restricted to cats that have
contact with cattle and affected cats are typically younger male
cats that live on farms (Schulman et al., 2001).

Feline sarcoids most frequently develop on the nasal philtrum
or lips, although they can develop anywhere on the body
(Schulman et al., 2001; Teifke et al., 2003). Whilst the mechanism
of transmission from cow to cat is currently unknown, the
distribution of lesions suggests that biting flies or cat fight wounds
may be important for infection with BPV-14. Feline sarcoids are
typically non-ulcerated exophytic firm masses. Histopathology
reveals proliferation of mesenchymal and epithelial cells, with
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well-differentiated dermal fibroblast-like cells underlying a
thickened epidermis, which has characteristic broad interlacing
rete pegs. Papillomaviral DNA can be detected by in situ hybrid-
isation within the mesenchymal cells (Teifke et al., 2003).
However, since infection does not result in viral replication,
neither PV-induced cytopathology or anti-PV immunostaining are
evident. Sarcoids tend to be infiltrative and local recurrence is
common after surgical excision. Treatment of a feline sarcoid with
imiquimod did not appear to slow disease progression (Munday
et al., 2015c).

Prevention of papillomaviral diseases

Papillomas in dogs are thought to develop when an
uninfected dog is first infected by a specific PV type. The
development of a papilloma coincides with the shedding of
large numbers of infectious virions (Sancak et al., 2015).
Therefore, preventing contact between an affected dog and a
dog that has never had papillomas is advisable. However, since
many dogs are inapparently infected by PVs and these viruses
are resistant within the environment, infection may be possible
even without contact with an affected dog (Roden et al., 1997;
Debey et al., 2001).

Since host factors appear to be important in the development of
pigmented plaques in dogs, and viral plaques and BISCs in cats,
minimising immunosuppressive drugs and treating immunosup-
pressive diseases should reduce the likelihood of disease. However,
other host factors also appear to influence disease development
and PV-induced disease can occur in animals without any
identifiable immunosuppressive disease.

In human beings, virus-like particle PV vaccines are used to
prevent PV infection and subsequent PV-induced disease. Whilst
such vaccines also prevent PV infection in veterinary species
(Suzich et al., 1995), there are three important limitations to the
use of vaccines to prevent PV-induced disease in dogs and cats.
Firstly, each virus-like particle type can only protect against a
single PV type. In humans, small numbers of high-risk HPV types
cause most PV-induced cancers, so producing a vaccine against
these types is feasible (Pitisuttithum et al., 2015). Similarly, in cats
the majority of PV-induced diseases appear to be due to FcaPV-2.
However, many different PV types cause disease in dogs suggesting
that a canine PV vaccine would need numerous components.
Secondly, for a PV vaccine to prevent infection, it has to be given
prior to first exposure to the PV (Pitisuttithum et al., 2015). This is
possible in human beings, since the high-risk HPVs are sexually
transmitted. However, since FcaPV-2 appears to be acquired from
the queen soon after birth (Thomson et al., 2015), it is possible that
novel vaccination strategies may be required to protect cats against
FcaPV-2 induced cancer. Thirdly, a vaccine has to be economically
viable and it is uncertain whether a vaccine to prevent a common,
but typically self-resolving disease, such as oral papillomatosis, or
a rare, but life-threatening disease, such as feline BISCs, would be
commercially viable.

Conclusions

Papillomaviruses are becoming increasingly recognised as a
cause of oral and skin disease in dogs and cats. The vast majority of
PV-induced papillomas are self-resolving. However, there is
evidence that PVs also cause pre-neoplastic and neoplastic
diseases in dogs and cats. Whilst further research is required to
determine the epidemiology of infection and the pathogenesis of
disease, the role of PVs in some disease may provide novel
strategies for prevention or treatment.
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