What MD can do?

MD: interpret experiment, make experimentally testable predictions, and gain
a physical understanding of real systems at the atomic level.
Sometimes, it shows unexpected results and help to develop a better theory,

better understanding, and new experiments.

Properties we can calculate/study:

Pair distribution function in a liquid
Diffusion constant in a a liquid

Structure factor in a liquid

Pressure vs. volume

Thermal expansion

Melting point

Surface melting

Free energy differences between phases
Defect dynamics and diffusion in solid (*)
Surface diffusion (*)

Surface sputtering

Surface scattering

Thermal conductivity

Shock waves

Detonation

Radiation damage events
Grain boundary structure
Vapor deposition (*)

Fast fracture
Nanoindentation

Fast plastic flow

Grain boundary sliding (*)
Protein structure (*)
Protein function (*)
Protein dynamics (*)

(* = may be limited by MD time scale)

Determining Parameters

experimental data

¢ X-ray and neutron
scattering crystal structures

e vibrational frequencies
(IR-Raman)

e NMR measurements

e crystal lattice constants

ab initio results

¢ Hessian matrix elements
— normal modes

o forces
® energy barriers

e electrostatic potential

Steps 1n a Typical MD Simulation

1. Prepare molecule
— Read i pdb and psf file
2. Minimization

— Reconcile observed structure with force field used (T = 0)

+ 3. Heating

— Raise temperature of the system

* 4. Equilibration
—  Ensure system is stable
» 5. Dynamics

—  Simulate under desired conditions (NVE, NpT, etc)

—  Collect your data
* 6. Analysis
—  Collect your data

— Evaluate observables (macroscopic level properties)

—  Or relate to single molecule experiments

Basic idea of MD

« Simulate motions or dynamics of a

molecule numerically by computing a
trajectory for the system as a function of
time: a virtual experiment.

Newton Equation
d2x1.

B

dt

F, =m,

» Basic idea is that we numerically solve

x(t) > F(x()) > v(r +%) — x(r+ Ar)
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1. Input initial conditions

Basin MD algorithm

Potential interaction V' as a function of atom positions
Pasitions 7 of all atoms in the system
Velocities v of all atoms in the system

i
2. Compute forces

vepeat 2,34 for the required number of steps:
The force on any atom

av
"o
is computed by calculating the force between non-bonded atom
pairs:
F;=%;Fy
plus the forces due to bonded interactions (which may depend on 1,
2, 3, or 4 atoms), plus restraining and/or extermal forces.
The potential and kinetic energies and the pressure tensor are
computed.

Fy=

3. Update configuration
The movement of the atoms is simulated by numerically solving

on’ ations of moti & 1
Newton’s equations of motion > 4. if required: Output step
«lz-r-, _ F; write posifions, velocities, energies, femperafure, pressure, efc.

di2 — omy
or
dry Cdv _ Fy

st Wl v}
dt Uoode my

Some points of MD

+ Potential/force usually have simple function form,
although they originate from electronic interaction
(electronic wavefunction).

+ Born-Oppenheimer approximation.

+ Periodic Boundary condition.

* Couple to the heat bath, so that allow the instantaneous
T fluctuate around the desired temperature.

+ The detailed atomic motions are usually unimportant.
What really matters are "the ensemble average"
properties. (MD is in fact chaotic with sensitive
dependence on initial conditions)

Initial conditions " L.
[1,(0), vi(0)] 1. Initial atomistic model

Calculate forces at current —

time [Fy()] from r() |~ | 2 Energy expression
Energy and forces

Integrate equations of motion
r(t) — r(t+At)

v(t) — V(t+At) « | 3 Duiver ~
t—t+AL Equations of 1]]0t.1011,
thermostats, applied

Save properties loads, ete.

Integrating the equations of motion

. 5 7 _ - ~
f;:& :w F;(r"'Af):f}(f)‘F&Af
m, At m;
P - » Euler method
b= F & Pl A)=P(0) i o
C At P+ M) = p,(e)+ FAL |

Verlet algorithm: Taylor expansion of positions with time

1+ M) = 1 ()4 7 ()Ar +%;~; (F)ar? +é‘;‘;‘(z)Af3 +oar')

rlt—Af) = ()7 (f)AM%f'; (1)ar? %;;@)M +ofart)
Sum two equations:

7(r+Ar)= 21;()‘)7 1;(7 - AI)Jri';(r)Ar2 +O(Af4)

3.11.2015



Verlet algorithm: various equivalent formulations

pl(H%Ar):pl(t)Jr%Fl(r)Af Advance p half step
1 SO
Velocity Verlet: pl[u—m] Advance r full step
v rlt+at)=r(t)+——=—"ar  (with p half step ahead)
pl(r+At):p,[r+iar]+iE(r+Ar)Ar Advance p half step
2 2 (with F at #+Ar)
1 (1
r,, r+5Ai]:r, r—gﬂr%v,(r)ﬂf
Leap-Frog Verlet: )

v,(r+Ar):vl(r)+iF,,(r+lAr]
m, 2

Calculate force
. A
Position:
Velocity:  —4 g+

time

Accuracy Vs. Af

Error term of Verlet is 4% order

Too-large At

NM/J\\AWWJJ\M/\A/ Large delta At
Total energy

(V + Zp?/2m) AN N A Moderate delta At

—_— Small delta At

time

Energy fluctuates, but mean is very stable over long times.

Commonly used potentials:

) _11b 7042
Ubond = El\r (dr - dp )
Eonds *———

Energy

) _ 14 02
; B Vangte = 5k: (8; — 07)
Angles ‘%
=T
% Vainedral = K71 +cos(3¢;)] +
8
Dihedral H S ‘
ReRese 2 g 5 [1 — cos(o; — 7))

Difedral angle

From quantum chenustry. th

miny 12 iy €
5 v = gmin | (YT g (4T
Van der Waals @ ----+ B é vdW = B a5 i
i ica @------ i ) — %%
Electrostatics @- ¥ ) H Vol = 2
67 67 & 2 ed;;

Molecular Mechanics Force Field

Bonding Potential Bonding Angle Fotential Imprapertorsion Potential
s
T o 7 ;
Ey *«-e By )
i
< e e PP
. e e
Torsion Potential Lennard-Jones-Potential Coulomb-Potential
Faz E“ 7
§ 3 LK I e
& o w
L e At i
CHARMM Energy Function: =
gy V(R) Ebonded + Enonfbonded

Eppied = 2Ky (b=bo)* + Y ky(0—6,)"+ Y k,(I+cos[ng—SD+ Y k,(0-a,)’

bonds angles dihedrals impropers

12 6
i o, 1 g9
Eprponied = 2 A€, | =L = L] [+ —"H
non-bonded ; ’|:[7;,] [ﬁ,]} ;47&‘,‘ I

i
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Periodic boundary conditions

Minimum-image condition

® [ o L ] ® L ]

* To minimize edge o . .
effects in a finite s s @
system, apply the . L . 3 @
periodic boundary N e “ e . ..
condition; p- . . = = .

* "Periodic . Fhimee peioe .
Boundary B £ .
Conditions" o * e o
means that the = L = % ” L
box is surrounded . . - . . r
by copies of itself. " period Jength -

L b ] L
L l. L .. L ..

P » o ® s 0
If r. < period length/2,
¢ “ . then only one image
. . ¢ | of each neighbor will
e 5 . 3 ® + be within cutoff
H ® a o . s | distance of atom i.
L ] L ] Y
* ¢ ® | This simplifies
@ e construction of the
» | neighbor fists, and
s e / reduces artificial
. - o | behavior.
®
® ® e
L J &
L ] L ®
b 9 * ¢ . 5
& E : L ] L ] L ]
L L J L ]

Temperature and thermostat

1 _ 5,3
T= zam(vi -7.)° /(ENkB)

« Thermostat: the system may be coupled to a
heat bath to ensure that the average system
temperature is maintained close to the
requested temperature

+ Berendsen thermostat: rescale all velocity by a
factor of A to control T.

1= [l_'_ﬁ(Tdlere _l)]1/2
v T

Energy minimize: steepest descent

+ steepest descents: we move the molecule
along the force vector reducing the energy
as much as possible in each step

Y;

Y
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Energy minimize: Conjugate gradient

* Conjugate gradient is efficient compared to steepest

descents;
2.0
b
{xg:¥0)
> 0.0
-2.0
5.0 0.0 5.0

b 4

Steepest descent method
— Conjugate Gradients Viethod

Energy minimize: Simulated Annealing

MDSA slow cool
energy min
Energy| start

will jump barrier

Energy|

“conformational space” “conformational space” We have a new
approach: basin-filling
“I"\D‘S:‘\:mn.> MDSA result +simulated annealing to
* search for the global
Fray Energy minimization!
"conformational space" "conformational space”

Global minimization: Monte Carlo Simulated Annealing,
Molecular Dynamics Simulated Annealing and Genetic
Algorithms are the most popular approaches to provide the
partial solution.

Pair distribution function

= ¥ 5
g(r) =F<225(r —1)>

2(r) = [ g(F)sin el

Structure factor: . T W T R R

S(§) = [ g(#)e""dr

X-ray scattering intensity: ](é) =| S(é) \2 ]

Some common ensembles used in molecular simulations:

Microcanonical ensemble (NVE) — maximum entropy
Canonical ensemble (NVT) — minimum Helmholtz free energy
Isothermal-isobaric ensemble (NPT) — minimum Gibbs free energy

Grand canonical ensemble (¢VT) — maximum PV

v F T
U >< G
S H P
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Microcanonical (NVE)

S S(E - 1l ip,))

micro

S =klogQ(E.V,N)

Canonical (NVT)

Isobaric/isothermal (NPT

Probability distributions

_H{np})
i

Pnkin =2

Z(T.V.N)

_E
Z(T.V.N)=3e T

micro

Free energies

F(I.V.N)=—kT'logZ

Ralied

P({’}}~{Pf}»V):m
Z(1.P.N)=Y Ze%

G(I.P,N)=-kTlogZ,

Some simple thermodynamic quantities:

] 1M
internal energy: U=(E)\=— Ei
(E) MZ
heat capacity: c :(aiuj
o\aT )y
o _[E)-ter) (=)
YUl kTR || KT
temperature:
“lp kT
KE =B (3N-N,
;2," B )

i
\¥._> # of constraints
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