Chapter 1

Introduction and Basic Operations

As the first chapter of the lecture note, we give a brief introduction to MATLAB and a few basic
operations in MATLAB. After going through this chapter, you can at least use MATLAB as a
calculator.

1.1 What is MATLAB?

“MATLAB” is the short for matrix laboratory. It is a numerical computing environment and
a programming language which provides a suite of tools for computation, visualization, and more.
MATLAB is widely used in academic and research institutions as well as industrial enterprises.

When to use MATLAB?

1. for rapid prototyping of numerical algorithms.

2. for quick data analysis and visualization.

When not to use MATLAB?

1. when you need to handle truly massive datasets.
2. when efficiency is paramount.

3. when you need production quality code.

4. when you need to produce high-quality graphics.

5. when you need symbolic capabilities.

Competitors/Alternatives

e Julia, a high-level dynamic programming language aiming high-performance scientific com-
putating (appeared in 2012)

e GNU Octave, an open-source clone of MATLAB

e computational languages/environments like S and R
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o Excel

e Mathematica, Maple, Axiom, other CASes (Computer Algebra Systems)
e systems languages (C/C++, ...)

e general purpose languages (Java, Lisp, ...)

e scripting languages (Python/NumPy/SciPy, Perl, ...)

e MATLAB clones (Scilab, ...)

In one way or another, most of MATLAB’s competitors can do what MATLAB does. For
instance, you can solve Poisson’s equation in Excel, but that doesn’t mean you should. Here are
some of MATLAB’s advantages:

1. the language is intuitive and mathematically expressive (vectorization!)
2. the documentation is excellent

3. many toolkits are available which extend the functionality

4. the debugger and profiler are integrated and easy to use

5. MATLAB is an industry standard.

6. MATLAB matrix manipulation algorithms (esp. for sparse matrices) are state of the art
and disadvantages:

1. the scripting system is somewhat primitive

2. for complex tasks (especially ones which require for loops), MATLAB can sometimes be slower
than hand-coded C or Fortran

3. MATLAB is expensive

1.2 MATLAB Interface

The MATLAB desktop consists of the following panels.

Command Window Users are allowed to type MATLAB codes or basic unix commands into
the command window. Press <return> to execute the command. Input command lines follow after
a “>>” symbol, while printed results typically do not. For instance,

>> 143%2

ans =

>>

As another example, type pwd (the unix command “print working directory”) to see current folder.
Type clc command to clear commands displayed in the window. Features such as <tab>-completion
and <up>-key for command history are available in the command window.
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Command History shows previous commands executed in the command window. Other history
features are available at the command window (<up> key, drag-n-drop).

Current Folder shows the content of the current working directory.

Workspace shows the variables. After you type a = 1+1 in the command window, you see a
appear in the workspace.

Editor MATLAB built-in editor, which can be called out by clicking “New Script” or pressing
<ctrl>+N (or <cmd>+N). (You can use your own editor!)

1.3 M-files

MATLAB codes can be written in files known as the “m-files” having extension “.m”. An m-file
can either be a script m-file, a function m-file, or a class m-file. It is the first non-comment line of
the code in a m-file that determines which kind (script, function or class) the m-file is.

1.3.1 Script m-file

An m-file is by default a script m-file. A script m-file is literally a list of MATLAB commands.
Suppose my_script.m is a script m-file saved in the current directory (that is, visible in the Current
Folder window). Then one may type

>> my_script

in the command window to execute the list of commands in my_script.m.

Example 1.1. An example of a script m-file:

my _script.m

S N PV

r
= sqrt( a’2 + b"2 ) % Pythagorean formula

Qo

r

Run the script by typing the filename in the command window:
>> my-script

c =

>>

From the above example, you may have noticed that variables a, b and c appear in the workspace
window. You may have also noticed what semicolons “;” do: a semicolon postfix suppresses
MATLAB from printing the result of the command.

In the above example, sqrt ( ) is a MATLAB built-in function (square-root function).
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1.3.2 Function m-file

A function m-file is a file where one defines a function. The first (non-comment) line of a function
m-file takes the form

function [output.args] = my_function( input_args )

Importantly, the name of the function “my_function” need to be the same as the filename of the

m-file “my_function.m”.
Suppose my_function.m is a function m-file saved in the current folder, one may use this user-
customized function “my_function” in the command window or script m-files in the same folder.

Example 1.2. An example of a function m-file:

my_function.m

% a few lines of comment
2

% or blank lines are ok
function ¢ = my_function( a, b )
aSquare = a’2;
bSquare = b"2;
s = aSquare + bSquare;
3 };

c = sgrt(

Now in the Command Window
>> d = my_-function( 3, 4)

d =

>>

As one execute the command “d = my_function( 3, 4)”, MATLAB “dives into” the filemy_function.m
and runs the commands with a= 3 and b= 4. As MATLAB reaches the end of the file, having

the calculated output value c= 5, MATLAB “jumps out of” the file and assign the value 5 to d.
Notice that none of the variables a, b, aSquare, bSquare, s, c in the function m-file are reflected

in the workspace. Variables in a function m-file are local variables. When MATLAB “dives into” or
“Sumps out of” a function, it only brings the values of the input arguments and output arguments

with it.

Example 1.3. MATLAB function can have multiple output arguments.

my _function.m

] = my_function({a,b)




>> [d,s] = my_-function(3,4);

25

>>

1.3.3 Class m-file

The idea of class m-file is usually covered in a more advanced topic in MATLAB. It is just for
the purpose of completing seeing all 3 types of m-file that we show class m-files in this chapter. It
does not make sense to dig into details of involved concepts of object oriented programming before
knowing the basic operations in MATLAB. So, skip this section if you do not find yourself enjoying

the following example.

Example 1.4. An example of a class m-file:

RightTriangle.m

classdef RightTriangle
% class of right triangle
properties
a 0 % length of a leg, default = 0
b =0 % length of the other leg, default =0
end
methods
function m = area(obj)
% returns the area of a RightTriangle obj
m = obj.a * obj.b / 2;
end
function ¢ = hypotenuse(obij)
% returns the hypotenutes of a RightTriangle obj
¢ = sqgrt( obj.a © 2 + obj.b * 2 };
end
end
end

In the command window

>> tri = RightTriangle;
>> tri.a = 3;

>> tri.b = 4;

>> tri.area

ans =
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>> tri.hypotenuse
ans =

5
>> hypotenuse (tri)

ans =

>>

Similar to function m-file, the file name must agree with the class name, which is “RightTriangle”
in this case. When one types tri = RightTriangle, one creates a variable (or an object, or
an instance) tri of class “RightTriangle”. The object tri has properties (or called class
members) a and b as found in RightTriangle.m. As shown in this example, the property a of
tri can be accessed by typing tri.a.

One can literally say “this variable tri is a right triangle, which is determined by the length
of the two legs a and b”.

Functions defined for objects of a class are called class methods. One may call the class
method area of the right triangle tri by typing either area (tri) or tri.area.

The high-level concept for class method is that one can say “the value returned from area
is a function of a right triangle tri”.

User-customized classes can be very useful in general purpose. For example, one may define
one’s own number system with customized +,* operations. For another example, a class can be
defined with properties being experimental data and parameters of a specific problem, and with
methods being various data analysis tools (or anything returning values as a function of the data
and parameters). A correct usage of class (or object-oriented programming) will in general provide
a high-level and organized program.

1.3.4 Comments in Code

You may have noticed that “%” in MATLAB code denotes that the rest of that line is a comment.
Another useful way of creating comments is the pair “3{, $}”.

o°

This is a comment

oe

{

These lines
are

all
comments

o°

}

Use comments to document your code!
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1.4 The Help System: your best friend

The command help shows the format(s) for using a command and directs you to related commands;
without any arguments, it gives you a hyperlinked list of topics to find help on; with a topic as an
argument, it gives you a list of subtopics.

help plot
help gr
help

If you want to see all the commands associated with elementary matric manipulation
help matlab/elmat

The command doc is like help, except it comes up in a different window, and may include more
details

help fft
doc fft

The command lookfor is used when you do not know what command you want; it does something
like a keyword search through the documentation

lookfor wavelet
Similarly, you can use docsearch

docsearch fourier
The command which helps you tell which file a particular command refers to, or whether it is built
in

which abs
which hadamard

demo gives video guides and example code

demo

1.5 Abort Command: Ctrl + C

If MATLAB is running a program and you want to terminate it, type Ctrl + C.

1.6 Basic Operations

In this section you will learn the basic operations in MATLAB and know how to use MATLAB as
a calculator. You can try all examples in the command window.
Here are some standard commands to start a session:

clear all % clears all variable definitions
close all % closes all figures
clc clears the screen

o°
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1.6.1 Scalar Arithmetics

~

MATLAB has the basic arithmetics for scalars such as +, -, x, /, power

r
’

o+
OO0 00 0w

*

/
~ b
mod (b, a)

[V R VR O R

Fractional power and square root are also available

87 (1/3)
sqgrt (9)

One may also create complex numbers by taking square root to negative number

>> z = l+sqgrt(-1)
7z =
1.0000 + 1.00001

or

>z =1 + 11
z=
1.0000 + 1.00004i

Its complex conjugation and absolute value are

>> conj(z)
ans =
1.0000 - 1.00001
>> abs (z)
ans =
1.4142

One may verify the famous Fuler formula

>> exp (lixpi)
ans =
-1.0000 + 0.00001

Note that MATLAB has the math constant 7 built-in, but not for the natural constant e. To
obtain the natural constant e, use exp (1).

>> pi

ans =
3.1416

>> exp(l)

ans =
2.7183
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Although MATLAB stores numerical values of variables with double precision (16 decimal digits),
the command window displays numerics result only up to 4 digits. To show more digits in display

>> format long

>> pi

ans =
3.141592653589793

>> format short

>> pi

ans =
3.1416

>>

Note that this only changes the number of digits that is displayed. It does not change computation
accuracy.
Floating point types have special values “inf”(00) and “NaN” (not-a-number). Try these out

0/0

1e999°2

isnan(NaN) % tests if the argument is nan
isinf (Inf)

isfinite (NaN)

isfinite (-Inf)

isfinite(3)

1.6.2 Matrix Construction

The square brackets [ ] concatenate elements within and create a matrix

>> v = [1,2,3]
v =
1 2 3
>> A = [1,2,3;4,5,6]
A =
1 2 3
4 5 6

The comma “,” is used to separate elements that belong in the same row, while the semicolon
“;” creates a new row in the array (matrix). It is also common to use the following alternative
expressions

>> A = [12 3; 45 6]
A =

1 2 3

4 5 6
>> A =[123

4 5 6]

A =

1 2 3

4 5 6

To see the size of a matrix
>> size (A)

ans =
2 3
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or

>> [m,n] = size(A)
m =

2
n =

3

The function zeros and ones are handy to create all-zero and all-one matrices:

>> B = ones(3,3)

B =
1 1 1
1 1 1
1 1 1
>> C = zeros(5,2)
C =

O O O o o
O O O O o

where the integer arguments of zeros and ones are the desired size of the matrix.
Remember how the square brackets [ ] concatenate elements enclosed and construct a matrix?

>> [[A;B],C]
ans =

e
[N
PR R oW
oo ooo
oo ooo

The repmat, replicating and tiling matrices, is a useful function for generating matrices:

>> repmat ([3,2]1,4,1)

ans =
3 2
3 2
3 2
3 2
The colon “:” is one of the most useful operators in MATLAB. One of its usage is to construct

row vectors with regularly spaced values.
>>u = 2:5

u =
2 3 4 5

Another example:
>> u2 = pi:6
uz2 =

3.1416 4.1416 5.1416

The spacing does not need to be 1
14



> u3 =2 : 0.5 : 4

u3 =

2.0000 2.5000 3.0000 3.5000 4.0000
> u4d =5 : -1 : 2
u3 =

5 4 3 2
The function “linspace”, which generates linearly spaced row vector, has a similar functionality
>> x = linspace(2,4,5)
x =

2.0000 2.5000 3.0000 3.5000 4.0000

(5 points linearly spaced between 2 and 4).
Other methods for generating matrices:

eye (7) % the identity

ones (5) % same as ones(5,5)

rand(2,2) % random numbers distributed uniformly in [0,1]
randn (2,2) % random numbers with standard normal distribution
inf (3, 3)

nan(4,1)

magic(5)

b

Summary The basic way to generate matrices is to use the square brackets “[ 1” operator, in
which one uses symbols such as spaces, commas, semicolons or new lines. The colon operator “:”
constructs row vectors with equispacing numbers. Functions such as repmat, linspace, zeros,
ones, eye, rand, randn, etc. are useful to generate elementary matrices.

1.6.3 Matrix Indexing

Let
>>A=[1234
5678
9 10 11 12]
A:
1 2 3 4
5 6 7 8
9 10 11 12

One may get the value of a matrix entry by
>> a = A(3,2)
a =

10

or set value

>> A(3,2) = -20

A =
1 2 3 4
5 6 7 8

9 =20 11 12

One may get a block from a matrix:
15



>> A([2 3]1,[2 3 41)
ans =

6 7 8

-20 11 12

Equivalent expressions include

In parentheses ( ) (array indexing), “end” indicates last array index. A single colon indicates
selecting all indexes

>> A( : , 2:end)
ans =
2 3 4
6 7 8
-20 11 12

so one may permute columns (or rows) simply by

>> B =A(: , [4,2,1,3] )

B =
4 2 1 3
8 6 5 7
12 -20 9 11

One may assign values to an entire block of a matrix

>> B = zeros(5,6)

B =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
>> B(2:4,2:5) = A
B =
0 0 0 0 0 0
0 1 2 3 4 0
0 5 6 7 8 0
0 9 -20 11 12 0
0 0 0 0 0 0
An important concept is that MATLAB uses column major order. That is, if we view the matrix
A =
1 2 3 4
5 6 7 8
9 -20 11 12

as a 1D array (vector),

>> A(:)

ans =
1
5
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One may access A by a single index; for example A (4) is 2 in this case. The expression A (4) is
known as the linear indexing. To convert linear indices to their corresponding rows and columns,
use ind2sub:

>> [r,c] = ind2sub([3,4]1,4)

where [3, 4] is the size of A. You may check that A (4) equals to A (1,2). Conversely,
>> ind = sub2ind([3,4],1,2)
ind =
4
Reshaping is frequently used as well:

>> reshape (A, 4, 3)

ans =
1 6 11
5 -20 4
9 3 8
2 7 12

which reshapes A to a matrix with size 4 x 3 so that after postfixed by (:) it recovers A (:). Note
that the argument 4 and 3 must multiply to 12, the total number of entries in A. One may replace
one of them by “empty matrix” []

>> reshape (A, [1,2)
ans =
3
7
11
4
8
12

oo N W Ul

-2

and MATLAB will do the calculation the only matching numbers of columns or rows for you.

The operators “.'” and “'” are transpose.
>> A
ans =
1 5 9
2 6 -20
3 7 11
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>> AL

ans =
1 5 9
2 6 -20
3 7 11
4 8 12

The “undotted” transpose is the Hermitian transpose, which also takes complex conjugation to
each elements

>> [1+21,3+41]
ans =
1.0000 + 2.00001 3.0000 + 4.00001
>> [1+21,3+44i]"
ans =
1.0000 - 2.00001
3.0000 - 4.00001
>> [1+21i,3+41i]."
ans =
1.0000 + 2.00001
3.0000 + 4.00001

Summary With parentheses () postfixing a matrix A one may access the matrix elements using
index. In the parentheses, one may use indices which need to be positive integers (1-based indexing);
colon “:” and “end” notations are allowed. One may either use subscript indices A (r, c) or linear
indices A (ind), and one may convert the two using the functions sub2ind and ind2sub. Reshaping
(reshape) and transposing (.' and ') are handy in indexing as well.

1.6.4 Logical Indexing

The comparison operators > (greater than), == (equal to), ~= (not equal to), < (less than), >=
(greater or equal to), <= (less or equal to), returns logical matrices. A logical matrix contains entry
of value true or false, displayed as 1 or 0:

>> A = magic(4)

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
>> A > 9
ans =
1 0 0 1
0 1 1 0
0 0 0 1
0 1 1 0
>> A == 10
ans =
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
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Common boolean operations “and”, “or”

respectively:

, and “not” for logical matrices are “&”, “|” and “~”

>> (A>5) & (A<10)

ans =
0 0 0 0
0 0 0 1
1 1 1 0
0 0 0 0
>> (A<=5) | (A>=10)
ans =
1 1 1 1
1 1 1 0
0 0 0 1
1 1 1 1
>> ~((A==4) | (A==5))
ans =
1 1 1 1
0 1 1 1
1 1 1 1
0 1 1 1

When the matrix is a scalar (1-by-1), MATLAB will suggest you to replace & with &s& and |
with ||. These non-vectorized “and” and “or” operators for logical scalars are the short circuit.
For the case of a||b, it will return true if a is true, without looking at b; for the case of a&sb, it
will return false if a is false without evaluating b.

Now let us look at logical indexing. One may access entries of a matrix by “plugging in” a
logical matrix of the same size:

>> isSmall = A<=5

isSmall =
0 1 1 0
1 0 0 0
0 0 0 0
1 0 0 1
>> A(isSmall) = 0
A =
16 0 0 13
0 11 10 8
9 7 6 12
0 14 15 0

Logical indexing can be very handy

>> A(A>10) = 10

A =
10 0 0 10
0 10 10 8
9 7 6 10
0 10 10 0

Note Logical matrices can also be returned by following functions

>> true(3,2)
ans =
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1 1

1 1
1 1
>> false(2)
ans =
0 0
0 0
>> isnan([nan,0,1])
ans =
1 0 0

any and all are useful

o°

any([1 0 0 01])
all([1 1 1 17])
all([1 0 0 01])

true if any of the vector entries is true or nonzero
true only if all vector entries are true or nonzero
this case it retuns false

o°

o°

1.6.5 Matrix Arithmetics

There is no ambiguity of what A + B means for A and B being matrices of the same size. It adds
each counterpart components together. It is also clear that cA for a scalar ¢ and a matrix A is the
matrix with each component multiplied by c¢. In MATLAB these operations are intuitive

>> A = [-1,1,2;4,2,3]
A =
-1 1 2

4 2 3
> B = [2,-4,3;1,0,0]
B =

2 -4 3

1 0 0
>> A + B
ans =

1 -3 5

5 2 3
>> A+l
ans =

0 2 3

5 3 4
>> Ax10
ans =

-10 10 20
40 20 30

However, for matrix-matrix multiplications, there is a distinction between “componentwise mul-
tiplication” and “linear-algebraic multiplication”. The componentwise multiplication denoted by

“.«” views matrices as arrays and take products of numbers in the counterpart entries:

C=A.«B means Cj = A;jB;; foreachi,j

>> A.xB
ans =
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Linear-algebraic multiplication is denoted by “”
n
C = AxB means Cij = ZAikBkj
k=1
where n = (number of columns of A) = (number of rows of B).

>> A = [1[2;3/4]

A =
1 2
3 4
>> B = [-1,1;1,2]
B =
-1 1
1 2
>> AxB
ans =
1 5
1 11

There are other operations and functions that other than “multiplications” that take different
notations in MATLAB for elementwise operations and linear algebraic operations.

Elementwise arithmetics

Elementwise arithmetics include

+
oe

plus

minus

times

(right) division (rdivide)
division by scalar
right-to-left division (ldivide)
power

B
B

o o

oe

o°

[os I i i
LUl
W Www

o°

oe

Common functions listed below also operates elementwise (There are still many functions not listed
here)

sgrt (A) % square root

exp (A) % natural exponential
log(A) % natural logarithm
logl0(A) % base 10 logarithm

abs (A) % absolute values

sin(A), cos(A), tan(A), cot(A), sec(h), csc(hA) % trigonometric functions
asin(A), acos(A), atan(A), acot(A), asec(A), acsc(A) % inverse trigonometrics
sinh (A), cosh(A), tanh(A), coth(A), sech(A), csch(A) % hyperbolic functions
asinh (A), acosh(A), atanh(A), acoth(A), asech(A), acsch(A) % inverse hyperbolics

Linear algebraic arithmetics

In the following, A and B are matrices, b is a column vector, and c is a scalar.
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A * B % matrix times (mtimes)

A/ c c\A % divide by scalar (mrdivide, mldivide)
A\ b % solves the linear system Ax = b (mldivide)
b'/A % solves x'A = b', that is A'x = b

A"2 % this case is the same as AxA (mpower)

For square matrix A, the matrix exponential is defined to be

o0
s
k=0

To evaluate matrix exponential in MATLAB

| =

k
!A.

o

expm (A) $ matrix exponential

A square root of a matrix A is a matrix B (may not be unique or even exist for general square
matrix A) so that B? = A:

sgrtm(A) % matrix square root

Example 1.5. If [ is the 3 x 3 identity matrix

>> I = eye(3)
I =

1 0 0
0 1 0
0 0 1

what are exp (I) and expm (I)?

Solution.
e 1 1 e 0 0
exp(I) = |1 e 1|, expm(I)= |0 e O
1 1 e 0 0 e

1.6.6 Strings
Strings are just arrays of character (char) values in MATLAB.

>> 'hello world'

ans =

hello world

>> ['h','e',"1llo w','orld']
ans =

hello world

Characters are essentially integers
>> char(77)

ans =
M
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>> double('s"')
ans =

115
>> double('7")
ans =

55

To convert a string that represents a number to a number

>> str2double ('123")
ans =
123

To convert a number to a string displaying that number

>> S = num2str (123)
S=
123

“disp(s)” displays a string S:

>> a = 123
a =
123
>> disp(['My favorite number is ',num2str(a)l)
My favorite number is 123

“disp” also displays numbers or other values

>> disp(3)
3

A C-compatible expression

>> fprintf ('integer: %d, double: %f, string: %s \n',1234,0.999, 'Hello World.")
integer: 1234, double: 0.999000, string: Hello World.

>> S = sprintf('integer: %d, double: %f, string: $%s \n',1234,0.999, 'Hello World.'")
S =

integer: 1234, double: 0.999000, string: Hello World.

To test equality of two strings, use strcmp instead of ==

strcmp('aaa', "bbbb")
strcmp ('aaa', 'aaa')

1.6.7 Loops and Controls

We learn four commands here: for, while, if and switch.
The basic form of “for loops” in MATLAB takes

for i=1:10
disp(1i);
end
Here i is the indez or iterator, “1:10” is the value array, and everything between for and end
are program statements that will be executed repeatedly for i iterating through each value in the

value array.
“If control” in MATLAB
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if (1 > 0)
disp(' 1 is greater than 0');
else
disp('this will never happen in this case')
end

and while loops:

a=1;
while a < 100

disp(a);

a = a*x2; SMATLAB still doesnt't have *= and similar operators
end

The ezpression after while (here “a<100”) or if is a logical scalar or a real numerics. The
statements between while and end will be repeatedly executed until that expression is false or 0.
“break” and “continue” can terminate loops:

% break and continue

a = 0;

while (1)
a=a+ 7;
disp (a)

if mod(a,5)==0
break; %breaks the loop
end
end

for i=1:100
if i > 10
continue; %skips the rest of the loop
end
disp (i)
end

The “switch/case” switches among cases based on expression

a = 'str';
switch a % <-— a scalar or a string
case 1,
disp('one');
case 2,

disp('two'");
case 'str',
disp(a);
otherwise,
disp('other');
end
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Chapter 2

Functions and Graphics

In this chapter you will learn a few ways to define your own functions in MATLAB. You will also
learn methods for plotting functions in MATLAB.

2.1 Functions

There are two ways to produce a MATLAB function:

1. write a function in a named file.

2. define at command line an anonymous function.

2.1.1 Function m-file (revisit)

We introduce how to write a customized function in MATLAB as an m-file by looking at an example.
The style of using nested functions is also explained.

Example 2.1. Define the following function as a function m-file
4 n
S == in(k
(x,n) - ,;_1 ay, sin(kz)

where

0 kiseven
a pr—
"T1L ks odd.

Side note. As n — oo, this trigonometric series with this particular choice of a; “ap-
1 ze(2mm (2m+ 1))

proaches” the square-wave function f(x) =
-1 ze((2m—-1)m,m)

Solution (straightforward).

SS.m
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function yv = 8S(x,n)

s = 0; % initialize the sum
for Kk = 1l:n
if mod(k,2)==1 % if k is odd
5 =5 + 1/k » sin(k+*x);
end
end
y = 4/pi % s;

Note that this function supports the case that x is an array (matrix), in which case the function
effectively computes the result elementwise. In other words, when the input x is a matrix, the
result y becomes a matrix of the same size, with y;; = S(x;;,n).

Solution (using nested functions). One may write several functions in a single function m-file.

SS.m

function vy = 5S(x,n)

s = 0; % initialize the sum
for k = 1:n

s = 5 + coeflk) * sin(k«*x);
end
y = 4/pi * s;

function a = coef (k)
if mod(k,2)==1 % if k is odd
a=1./k;
else
a = 0;
end

The filename must agree the name of the main function, which is the first function appeared
in the file (in this case ss). The subfunctions (in this case coef) are visible only in this m-file.
Subfunctions can be nested as well:

SS.m

function v = SS5(x,n)

0; % initialize the sum
for k = 1:n
s = 5 + coef (k) * sin(k«x);

function a = coef (k)
% coefficients of the sine series

26




if is0dd (k)
a = Lluftk;

function i = isodd(
% tests whether
i = (mod(k,2)==1)
end

k
k

)
is odd or not
i

end

In this case, function’s are paired with end’s. Note that in this case, the function “isodd”
is not visible to the main function “ss”.

In nested functions, the child function recognizes the variables in its parent function. For
example, in the above case is0dd is the child of coef; coef shares its data to isodd. We may
remove the input argument “(k)” from “isodd (k)”.

SS.m

function v = 5S5(x,n)

= 0; % initialize the sum
k= 1:n
s = 5 + coef (k) * sin(k#*x);

vy = 4/pi + s;
end

function a = coef (k)
% coefficients of the sine series
if is0dd
a=1./k;
else
a = 0;
end

function i = is0dd
% tests whether k is odd or not
% the function recognizes the variable k in the parent function
i = (mod(k,2)==1);

end

¢
o
Q.

2.1.2 Anonymous function

Suppose we want to define a function Q(z,y) := sin(z) cos(y), we may once again write an m-file

MyFunctionNumberil1l
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function z = MyFunctionNumberll (x,vy)
a F

% One of lots of functions... if every function is written in a file
z = sin(x).xcos(y);

or define the function as an anonymous function with a single command using the “@Q” operator:
>> Q = Q(x,y) sin(x).xcos(y);
To call this function,
>> Q(pi/2,pi)
ans =
-1
The syntax of defining an anonymous function is

function_handle= @ (argument_1, argument_2, ...) expression.

The output object (in the above example) Q is a function handle, which you can view as another
variable in the workspace, but representing a function instead of a numerics.

Speaking of function handles... One may create function handles from existing m-files:
>> f = @SS;

(Here we assume Ss.m in Example 2.1 is in your current folder). Or one may create function
handles from built-in functions

>> g = @sinj;
Or anonymous function
>> h = @(a,b,c) atbtc;

There are functions or commands that require you to feed in a function handle. For example, the
built-in function

q = quad (fun, a,b)
computes the numerical integral ¢ ~ f: fun(x)dz. Here fun is a function handle.

>> quad(@sin, 0, pi)
ans =
2.0000

>> g = quad(@(x) x.72,0,1);
>> g
q =

0.3333

>> quad (@ (x)SS(x,500),0,pi)

ans =
3.1400
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Example 2.2. Define the following function using anonymous function.

f(x):{\/l—xQ, -l<z<l1

—vz2 -1, z>1lorz<-1.

Solution. Logical expressions return array of true or false, which are 0’s or 1’s; convex combining
expressions with coefficients 0’s or 1’s effectively switches between expressions.

f = Q@(x) (x>-1 & x<1).%* sgrt (1-x.72) + ...
(x>=1 | x<=-1).x -sqgrt(x."2-1);

Note that this supports the input argument x being an array.

2.2 Figure and Axes

Figure is MATLAB’s name for graphics window. A figure can contain azes, which is a frame
equipped with a coordinate system (2D or 3D, linear or log-scale,...). An azes may contain plots.

2.2.1 Figure

Type
>> figure

to create a new figure.

MATLAB uses figure handles (represented as type double) to refer to these windows

hFigl = figure
hFig333 = figure (333)

One may set properties of an existing figure
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set (hFigl, 'Position', [0 0 400 5001])
or a new figure
figure('Position', [0 0 400 500], 'Name', '"An Empty Graphics Window')
An entire list of figure properties is available in MATLAB documentation
docsearch 'figure properties'
You can also adjust properties interactively
propertyeditor

We won’t pursue MATLAB’s extensive set of tools of this type (the propertyeditor), for two
main reasons :

e These GUI-based tools are (in theory) largely self-documenting

e For most scientific applications, figures need to be regenerated frequently, so its worth the
effort to do it with scripts

Do note all the menus and buttons MATLAB provides, though!
Useful commands:

gcf % creates a figure if none exists, and returns the current figure
clf %clears the current figure

close (hFigl)

close %same as close(gcf)

close all %close('all')

Handles (like figure handles or axes handles, handles for a plot, etc) are references to objects.
One may pass the value of handles (just a number) to functions without copying the whole figure
object.

Example 2.3. The following function creates a full screen window.

my figure.m

function hFig = my_figure
hFig = figure;

fullScreen (hFig)

end

function fullScreen(hFig)
scrsz = get (0, 'Scre
set (hFig, 'Position

end

15ize');

; SCrsS2);

Note that this program only gives a copy of the figure handle hFig to the function fullscreen.
With only this local variable, fullscreen has the full control of this existing figure hFig refers
to.

30



In the line scrsz = get (0, 'Screensize'), “0” is the handle (reference) to the root.
'ScreenSize' is one of the properties of the root.

2.2.2 Axes

Similar to figure, you may create a new azes by typing
hAxes = axes

which creates a new azes in gcf (the current figure).

Useful commands

gca current axes

cla

o° oo

clears the current axes

Find list of axes properties
docsearch 'axes properties'

subplot is a shortcut to create and work with grids of axes within a single figure
subplot (3,4,1)

subplot (3,4, 4)
subplot (3,4,11);

2.3 2D Plotting

2.3.1 The plot function

The plot function creates a sequence of lines in gca. Let x and y be two vectors of the same size.
Then

plot (x,y)
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plots the sequence of points ((xl, V1),
can be adjusted by setting properties.

Example 2.4. Very basic plotting

close all;clear;clc;

x = linspace(0,10,100);
y = cos (x);

plot (x,y);

e (2N, Y N)) The style of how these points are displayed

Search LineSpec (docsearch LineSpec), which is a basic specification of the line style using

string syntax.

plet (x,y, 'ks")
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The object plot creates is lineseries. One may control the style of the plot by setting its property

docsearch 'Lineseries properties'

Example 2.5. Set lineseries properties.

close all;clear;

%X = linspace(0,10,100);

y = cos(x);

hPlot = plotix,y,'Colozr',[.3 .6 .9]); %hPlot is a lineseries handle
% 3-component color specifies RGB

set (hPlot, 'LineWidth', 3)

G4 b\ hBeLd-Q 00 80 |

Example 2.6. This one is undocumented, and bug-riddled, but might be something to try if
you want antialiased lines:

subplot (1,2,1)

plot (x,y,; 'LineSmoothing'; 'on')

subplot (1,2, 2)
plot (%, v)

" rrr——

Odde h S2L99¢8«4- 2 08 nO

R
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One may plot multiple data sets in a single axes.

Example 2.7. Plot multiple data sets.

close all; clear; clc

x = linspace(0,10,100);

vyl = sin(x);

y2 = cos(x);

plot(x,y¥l, '*=")

hold on % without this, new plot will clear the axes
plot (x,v2,'ro', 'LineWidth', 2}

.00

hold works with the 'NextPlot' property of the current figure

set (gcf, "NextPlot', 'add'); % same as hold on
set (gcf, "NextPlot', 'replace'); % same as hold off

One may also plot multiple data sets using a single plot command. This time the y data
is a matrix. Note that plot reads the data columnwise.

close all; clear; clc

x = linspace(0,10,100);

yl = sin(x); yv2 = cos(x); y¥3 = tan(x);
plot (%! 1) 520 %3]0

yvliim([=2,2]) % display only —2 < y < 2
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Add labels:
xlabel {'x")
ylabel ('v')

title{'Trigonometric furnctions')
legend('sine', "cosine','tangent"')

e
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Example 2.8. hold all keeps the color and linestyle from resetting

figure

hold on

plot (cos(1:10)); %blue
plot (sin(1:10)); %also blue

figure

hold all
plot(ces(1:10)); %blue

35



plot (sin(1:10)); %green

We saw ylim command that adjust the frame limit of the axes in Example 2.7. Related
commands:

x1im ([0 107])

% axis (not to be confused with axes)
axis ([0 10 -2 2])

[xmin, xmax, ymin, ymax] = axis;
axis off % axis('off'")

axis on

axis equal

axis square

help axis

axis xy

axis 1ij

axis image

axis normal

Example 2.9. Plot a circle

close all; clear; clc

t linspace (0, 2%pi, 500) ;
x = cos(t);

y = sin(t);

plot (%, v, 'k=")

axis off

axis equal
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2.3.2 The ezplot family

The ezplot (easy-to-use function plotter) takes a function handle as input instead of data sets.

Example 2.10. The ezplot command plots a given function and labels your graph.

figure ()
ezplot (@ (u) u.xtan(u),[-2,10])

> DUde b LSOBRA-Q 08 =0

Note that ezplot usually takes care of the singularity (for example, it removes the vertical
lines).

You can also plot implicitly defined functions using ezplot — if the argument is a function f
of z and y, it will assume you want to plot f(z,y) = 0; the limits a,b apply to both z and y (you
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can also specify [xmin xmax ymin ymax])

Example 2.11. Plot a levelset of a function using ezplot.

figure ()
levelSet = 3
ezplot (R (x,y) x."2+y. 2 - x.xy-1 - levelSet, [-3,31])

A0
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You can also plot a parametrized curve using ezplot.

Example 2.12. Plot

12)

] =[] =m0 —acctay -t

figure ()

fr = @(t) exp(cos(t)) - 2+cos(4*t) — sin(t/12)."5;
fx = @(t) sin(t) .xfr(t);

fy = @(t) cos(t).xfr(t);

ezplot (fx, fy, [-10,101])
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Note the low quality; we can’t specify the number of points to use.
There are other ez plotters such as ezpolar and ezcontour

Example 2.13. Examples using ezpolar and ezcontour.

figure ()
ezpolar (@ (th) sgrt (2+«272%cos (2xth)))

figure ()

ezcontour (@ (x,y) cos(x)*cos (y)*exp (-sqrt ((x"2+y~2)/4)))
figure ()

ezcontourf (@ (x,y) cos(x)*cos (y)*xexp (—sqrt ((x"2+y~2)/4)))
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2.3.3 Other common plot commands

Log scale plots

Example 2.14. The semilogx (resp. semilogy) creates plots with z- (y-)axis being log-
scaled.

H
w

Q(w) 20 (1i*w) .* (lixw + 100) ./ ((li*xw+2) .* (1i*xw+10));
logspace (-3, 3, 200);
semilogx (w, 20 » log(abs(H(w)))); grid
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The 1oglog command creates plot with both = and y axis log scaled.

t = linspace (0, 2xpi, 200);

X = exp(t);

y = 100 + exp(2+t);

loglog(x,y, 'LineWidth', 2); grid

e
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Polar plots

Example 2.15. Polar plot.

t = linspace(0, 2%pi, 200);
r sgrt (abs (2xsin (5xt))) ;
p = polar(t,xr, 'g');

set(p, 'LineWidth', 2);
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Two-in-one axes
Example 2.16. plotyy manages a pair of axes for you.

w = =53 .,135p

vyl sinh (x) ;

y2 = cosh (x);

ax = plotyy(x, yl, x, y2);
xlakbel ('"x');

hyl = get (ax (1), 'ylabel');
hy2 = get (ax(2), 'vlabel');
set (hyl, 'string', ‘'sinh(x)');
set thy2, 'string', 'cosh{x}");

*» Ddde h SAOBDEWH- G 08 ag

plotyy with different scalings/plot commands:

plotyy (x,y1l,x,y2,@stem, @semilogy)
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See also
See also other 2D plot functions:

bar, barh, hist, histc % bar charts, histograms

area, % filled area plot
stairs, % stairstep graph

pie, % pie chart

stem, % discrete sequence data

compass, % arrows emanating from origin
comet, % animated comet plot

)

contour, pcolor % contour plot, pseudocolor plot of a matrix (2D scalar data)
quiver, % arrow / vector field plot

2.4 Images

Another extensively used 2D visualization of data is #mage. Image could come from an actual image
file, a processed image by some of your MATLAB program, or maybe a matrix of data. Here we
introduce a few simple commands related to images.

2.4.1 Read images

Suppose myImageFile. jpg is an image file under your current working folder (other image exten-
sions .bmp, .cur, .gif, .hdf4, .ico, .jpg, .jp2, .pbm, .pcx, .pgm, .png, .ppm, .ras, .tiff, .xwd
work as well). Use the command imread to read the image:

A = imread('myImageFile.Jjpg');

Now, in the typical situation, A is a 3-dimensional array (like matrix, but matrix is 2-dimensional
array) that stores the intensity of the image for each pixel and each color channel.

>> whos A
Name Size Bytes Class Attributes
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A 1001x1419x3 4261257 uint8

The third dimension of the array A indicates the RGB color channels. (Some image file may
use CMYK color channels or RGBA channels supporting opacity/transparency). For example
A(:,:,1) is the matrix of which the (i, j) element indicates the intensity of the color “red” at
pixel (i, j). Note that the class of A is uint8, an “8-bit unsigned integer”, so you will observe
that each entry of A only take integer value ranging from 0 to 255.

2.4.2 Show images

Suppose we have an image A (read from an image file using imread command mentioned above),
one may view the image by

imshow (A)
or

image (A)
or

imagesc (A)

Both imshow and image display the color of the image using the standard scale: for A of class
uint8, 0 is darkest and 255 is brightest; for A of class double, 0 is darkest and 1 is brightest. On
the other hand imagesc displays the color that is scaled flexibly; it is usually used for visualizing
a matrix of class double as an image.

In many image processing experiments, it is handier if A is just a matrix (instead of 3-channel
array) of class double. To turn A into such form,

B = rgb2gray (A);
C double (B) /255;

B will be a matrix (1-channel indicating grayscale). ¢ will be of class double ranging from 0 to 1.
It is notable that rgb2gray does a better job than just averaging the intensity of the 3 channel; it
takes account of the human sensation of vision; for example yellow (RGB=(1,1,0)) looks brighter
than magenta (RGB=(1,0,1)):

>> rgb2gray (reshape([1,1,01,1,1,3))
ans =

0.8860
>> rgb2gray (reshape([1,0,11,1,1,3))
ans =

0.4130

You may notice that image or imagesc show grayscale images in an unusual colormap: it maps
numbers to colors that is not a list of gray colors ranging from black to white. This can be set by
the colormap command.

imagesc (C)
colormap gray

docsearch colormap for more options of built-in color-maps, and for defining customized color-
maps.
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2.4.3 Write images
Use
imwrite (C, 'myImage2. jpg')

to export a matrix C as an image file.

2.5 Create Animation

To create an animation, put your plot commands in a loop. Note that you will need the drawnow
command in each iteration to update the figure window.

Example 2.17. Animate the time-dependent function

u(z,t) = Le_’cz/(‘“)

VAt

(this is the heat kernel).

u = @(x,t) 1/sgrt (4xpix*t).xexp(-x."2/(4%t));
t = 0.01;
x = linspace(-3,3,100);
while t<1
hPlot = ploti{x,u(x,t}));
set (hPlot, "Linewidth', 2} ;
ylim([-1,3]);

drawnow
t = £+0.01;
end

2.6 Enhance Performance

2.6.1 Vectorization v.s. For loops

You may have noticed that we commented “this function supports the input argument being an
array” in both Example 2.1 and Example 2.2. This is the concept of “vectorization”.

In the general sense, a function or a program is said to be vectorized if it operates on an entire
array of data instead of processing a single value of the array IV times.

Many CPUs can apply the same operation simultaneously to (say) four (or more) pieces of
data. A program is truly vectorized if it processes a few pieces of data of an array simultaneously.
Luckily, most MATLAB built-in functions are genuinely vectorized. It can make a big difference
in performance between a vectorized program and a program full of loops.

To test performance, use the pair of commands tic and toc. The toc command returns the
time the machine spent running commands between tic and toc.
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Example 2.18. Here is an example evaluating a MATLAB built-in function on a large array.

rand (100000,1) ;
zeros (100000,1); % <- Preallccation. Even slower without this line

for k = 1:100000
vik) = loglO(x(k));

Elapsed time is 0.351050 seconds.

A vectorized program has the loops replaced by a simultaneous (parallel) evaluation.

tic
y = logl0(x);
toc

Elapsed time is 0.002357 seconds.

2.6.2 The bsxfun function

There are programs whose vectorization is not as obvious as Example 2.18. It is usually a fun
challenge to come up with a clever code that is fully vectorized. The bsxfun (binary singleton
expansion function) is a useful MATLAB built-in function in many situations.

To explain the particular type of situations, let us look at an example.

Example 2.19. Let V be an N x k matrix representing N number of RF-vectors

Vi1 V12 Uik

V21 V22 Vog
V =

UN1 UN2 - UNk

Normalize each row of V. That is, find the N x k& matrix U such that each row of U

[Uﬂ Yj2 - Uﬂf]

Ui = :
v+ 03+ od

Assume that 2132-1 + vjz2 + -4 ’UJQ-k # 0 for all j.

The first attempt is to write a loop that visit each row of V.
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Solution (using for loop).

normalize.m

function U = normalize (V)
% NORMALIZE normalizes an input wvector V.
% The j—-th row of U is the normalized j-th row of V.

[N, k] = size(V);
U = zeros(N,k);
Fax: =3 2 N
U(J,:) = V(J,:)/sgrt(sum(V{],:)."2));
end

>> V = rand (10000, 5000) ;
>> tic; U = normalize(V); toc
Elapsed time is 5.217463 seconds.

[ |
Now we attempt to replace the for loop by a few built-in functions. We may vectorize the compu-

tation of the norms of rows of V.

Solution (attempt to vectorize).

normalize.m

function U = normalize (V)
norm_cf V = sgrt(sum(V."2, 2));
U = V./norm_of_V;

This program does not work. The variable v is an N-by-k matrix while norm_of_v is an N-by-1
matrix, so we cannot perform the ./ (rdivide) operation in the last line.
One may fix this problem by creating k copies of norm of v:

normalize.m

function U = normalize (V)
[~ k] = size(V);
norm_of_V = sqgrt (sum(V." 2, 2));

U = V./repmat (norm_of_v, 1,k);

>> tic; U = normalize (V); toc
Elapsed time is 1.534011 seconds.

A better way is to use the bsxfun function, which avoids the redundant data copying.
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Solution (vectorization using bsxfun).

normalize.m

function U = normalize (V)

norm-.cf V = sqgrt(sum{V." 2, 2));

U = bsxfun(@rdivide,V, norm_of_V);
>> tiec; U = normalize(V); toc

Elapsed time is 1.015402 seconds.

The syntax of bsxfun is
C = bsxfun( F, A, B)

where F' is a function handle that takes two inputs. Suppose A, B are matrices of size ma-by-n
and mp-by-npg respectively. Then the output matrix C has its element

(F A(Z J)s (m)) when ma = mp, and ng = np

|
:u>

(5,5)> (1,1)) when m4 = mp, and ng =1

o
:J>

) B,j)) whenma =mp, and ng =1

|
.h;

,J)’B(’LJ)) when my4 =1, and ng = np

!

A(z 1), Bj)) whenmp=1,andng=1

(

(A

(

Cij) = § F(Aua), Baj)) when mp =1, and na =np
(

(

(F'(A1,5), Be,1y) whenmy =1, and ng =1

In other words, when some dimensions of the input matrices A, B are singleton (size be 1), bsxfun
effectively expands the singletons in evaluation of F'(A, B).

2.6.3 Preallocation

There are loops in a program that is unlikely to be replaced by a parallel evaluation (vectorized).
In such cases be sure that you preallocate variables to enhance performance.

Example 2.20. Find the array (x1,...,2y) that satisfy

Tnt1 =3.9xp(l —axy) forn=1,... ,N -1
T = 0.5.

There is no analytic solution to this difference equation, hence you cannot plug 1:N to a
formula and get all x1,..., 2y at once.
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Side note. The coefficient “3.9” is picked close to and below 4. In this case the resulting
sequence i, ...,TN is chaotic.

For such example, one has to use a for loop to evaluate each entry of the array
for k = 1:N
x(k+1) = £(x(k));

end

where £ = Q(x) 3.9+x* (1-x).

(Without preallocation).

clear
N = 10000;
f = Q(x) 3.9*x*(1-x);

tic
% (1) = :0.5;
for k = 1:N-1
x(k+1) = £(x(k));
end
toc

Elapsed time is 0.032758 seconds.

Before the iteration, MATLAB only sees x (1) = 0.5 and has no idea how much space of
memory should be reserved for the array x. When MATLAB needs to store number to x (k+1),
which is an unexpected entry, it creates another vector of a longer length and copy each value
of x (1:k) to the new space.

Roughly speaking of number of operations the machine has to do, the original O(N) com-
plexity becomes O(N?).

(With preallocation).

clear
N = 10000;
f = @(x) 3.9%xx(1-x);

tic
x = zeros(l,MN); % <— added this line
x(1) = 0.5;
for k = 1:N-1
®{k+l) = £(x(k));
end
toc

Elapsed time is 0.007758 seconds.
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2.6.4 Profiling

To spy the performance of your program, you may use the profiling tool MATLAB provides (instead

of having lots of tic’s and toc’s). MATLAB profiling tool profiles execution time for functions,

from the report of which you know what part of your program spent most of the running time.
Basic commands:

profile on

[)

% run some program here

profile off
profile viewer

2.7 3D Plot — Curves

Generalizing from plane curve to space curve is direct. To create a figure of plane curves we use
plot. To create a 3D space curve we use plot3.

plot3(x,y,z,...)

where x,y, z are vectors of same length which describe a list of 3D coordinates. When the adjacent
points of the list are close to each other, the 3D plot resembles a continuous curve. You can also
visualize list points that scatters without order; in that case you may set the 'LineStyle' property
to be "none’.

Example 2.21 (Helix). Plot the following parametrized curve

2(t) =021
Solution.
t = linspace (0, 6xpi, 100);
x = cos(t);
y = sin(t);
z = 0.2*t;
figure

ol e S S - IR o sl
axis equal
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Example 2.22 (Trefoil knot). Plot

Solution.

x(t) = sin(t) + 2sin(2t)
y(t) = cos(t) — 2 cos(2t) 0<t<2m
L 2(t) = —sin(3?)

t = linspace(0,2%pi, 200);
X = sin(t) + 2 x sin(2*t);
y = cos(t) — 2*cos(2xt);

z = —sin(3*t);

figure

plot3(x,y,z, 'LineWidth',5)

axis equal

o1
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2.8 3D Plot — Surfaces

The basic command for plotting a surface is surf:
surf(X,Y,Z,C)

where X, Y, Z and C are matrices of same size, which specify a table of 3D coordinates and their
color. The matrix specifying color C is a real-valued matrix (as oppose to RGB) so one needs to
control the colormap to tune the displayed color. Here the argument C' is optional.

To create a table of cartesian coordinate, you will find meshgrid function very useful.

The created surface object has properties that can be found with

docsearch surface properties

The properties often used are

e 'XData', 'YData', 'ZData', 'CData’'. Their values are the X, Y, Z and C matrices.
Setting the values of these properties updates the shape and the color of the surface object
without creating a new surface.

e 'EdgeColor’', 'FaceColor'. The color of the edges and the faces. The value can be
"none', set to which the edge or face will be invisible. The value can be a ColorSpec code;
for example 'k ' is black and 'b' is blue. The value can also be a 3-vector specifying RGB.
The value can also be 'flat' or 'interp', which will display the edge color as the nearby
value of C of "chata'. ('flat' gives piecewise constant color and 'interp' gives piecewise
linear or other interpolation of color depending on the 'Renderer' property of the current
figure gcf).
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Example 2.23. In this example we plot the graph of the multivariate function

F,y) = cos (Va2 + 47)

f = @(x,y) cos(sqrt(x."2 + y."2));

x = linspace(-10,10,30);
y = linspace(-10,10,30);
[¥,Y] = meshgrid(x,y); % X,Y are matrices, X(i,3)=x(3j), Y(i,])=y(1).

hs = surf(X,Y,f(X,Y)); % Think of it, (X,Y,f(X,Y)) gives exactly the
% table of the desired X,Y,Z data
% Here, hs is the handle to the surface object
axis equal '

You can observe that the default 'Facecolor' is 'flat', 'EdgeColor' is 'k' and 'Chata'
is the same as 'zbata'. Let us modify these properties.
The following code can modify the surface to have arbitrary plain color.

set (hs, 'FaceColor', [0.4,0.4,0.8])
set {hs,'EdgeColor’ , 'w'}
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The following code makes the face color be continuously interpolated 'chata’.

set (hs, 'FaceColor', 'interp') % interpolate face color
set (hs, 'EdgeColor’', "none") % show no edge

which will produce the following (left) figure. The default renderer of a figure is 'opengl’
(see get (gcf, 'Renderer') ), which interpolates color piecewise linearly. This interpolation
scheme creates artifact when the grid is not fine enough and the desired color gradient does not
align with the direction of the grid. The 'zbuffer' renderer does a better job in interpolating
colors in this particular example:

set (gcf, 'Renderer’, 'zbuffer')

which produces the following (right) figure.

= Udde b R5099«-C 08 a0

Let’s play with a more creative 'cbata'. Let us define Cj; = ([z/mj + [j/mj) mod 2,
which is a checkerboard pattern with block size m.
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ckb_fun = @(i,3) mod(floor(i/3) + floor(j/3),2);
© = bsxfun(ckb.-fun, 1:30; (1:3007);

set (hs, 'CData',C) ' '

set (hs, 'FaceColor','flat', 'EdgeColor','k")
colormap summer

One may put light by the command
light
Let us turn off the edge color again

set (hs, 'EdgeColor', "none')

@)

L 0";;v ‘-‘:;. ‘:
& s

There is a 'FaceLighting' property for each surface object. The value of it can be 'none’
(no lighting), ' f1at ' (with effect shown above), 'gouraud' (default for interpolated shading)

and 'phong' (giving the best lighting).

set (hs, 'FacelLighting', 'phong') % (left)
set (hs, 'FacelLighting', 'gouraud') % (right)
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The 'xData' and 'YData' do not need to be a cartesian coordinate. You can parameterize
the surface using polar coordinate as shown in the following example.

Example 2.24. We plot the same surface as the previous example, but using the polar coor-
dinate. Now fpolar(r,60) = cos(r).

clear
close all
clc

f polar = @(r,theta) cos(r);

N.r = 30; N.t = 60; % resolution in radial and angular
= linspace (0,15,N_r); % radial

= linspace(0,2+»pi,N_t}); % angular

[R, T] = meshgrid(r,t); % polar coordinate

H
I

o

% create the surface object
hs = surf(R.*cos(T),R.*xsin(T), f.polar(R,T));
axis equal

% put a checkerboard pattern

ckb_fun = @(i,Jj) mod(floor(i/3) + floor(j/3),2);
€ = bsxfun(ckb_-fun, 1:N.r, (l:N_t)');

set (hs, "Chata',C)

% colormap and lighting

colormap gray

light

set (hs, '"FaceColor','flat", 'EdgeColor’', "none')
set (hs,; '"Facelighting',; 'phong')

% remove the frame
axis off
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2.9 Camera in a 3D Plot

You can set the camera angle by the command
view (10,40)

where the two arguments are the azimuth and elevation.
You can use the rotate3d tool by clicking the corresponding icon on the toolbar of the figure

window or execute the command

rotate3d

However, the default rotate3d is not the best tool for 3D navigation. You will find

cameratoolbar

pretty useful.
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Chapter 3

Linear Algebra with MATLAB

The two most fundamental problems in the study of numerical linear algebra are solving linear
systems

Ax=b
and solving eigenvalue problems
ij = )\j:cj.

Linear algebra theory provides useful knowledge about general properties and criteria of existence
of solutions to linear problems, as well as basic procedures if you were asked to solve these linear
problems by hand. To name a few examples, Gaussian elimination can be used to solve a linear
system Ax = b, Cramer’s formula can invert a matrix, Gram-Schmidt process finds an orthonor-
mal basis for a QR factorization, and finding the roots of the characteristic polynomial gives the
eigenvalues of a matrix. These algorithms are often referred as the direct methods. They are often
the proof of existence of the solutions themselves, and they provide the exact solution (if exist) in
a finite number of procedural steps.

However, many of these direct method algorithms are not suitable for solving problems with
large matrices using computer. For example, the Gaussian elimination procedure generally requires
number of operations proportional to n® where a matrix of size n x n. That is very inefficient
comparing to O(n) algorithms (usually the ultimate goal for linear problems). In addition, some
direct methods (like the Gram-Schmidt process) give final results that are very sensitive to the
numerical value of each step; this can yield undesirable result when computing on machines with
finite precision.

In the study of numerical linear algebra people developed much more efficient algorithms for
solving linear systems and eigenvalue problems. Many of them are iterative methods, as oppose to
the direct methods, which computes the approximated solution as a sequence that robustly and
efficiently converge to the true solution. The good news is that MATLAB has included algorithms
of the state of the art.

3.1 Linear System

Let A be an m-by-n matrix and b be an m-by-1 vector. The problem is to find an n-by-1 vector
such that Az = b.
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In most cases, this problem can be solved by MATLAB using the backslash operator (m1divide)

x = A\b;

If m = n and A is invertible, then x=aA\b computes roughly the same result as x = inv (a) «b,
except that it is much more efficient.

If m = n but A is singular or close to singular, a warning message will appear. In that case
one either reformulates the problem (adding more auxiliary linear conditions to z to get a different
linear system whose matrix is full-rank), or use pinv (pseudoinverse) instead:

x = pinv (A) xb;

which returns a least squares solution, which is a minimizer = of the Euclidean distance of Az and
b. Note that in this case, the direct call of x = A\b is not recommended.
If m # n and you are looking for a least squares solution, go ahead and use

x = A\b;

When the rank & of A is n (that is A has full column-rank), then the least squares solution is unique,
and the result of x = A\b agrees with x = pinv (a) xb. When the rank k£ of A is strictly smaller
than n, there are infinitely (of dimension (n — k)) many x that are least squares solution. In this
case, x = pinv (A) b gives the one that x has the least norm, while x = A\b gives an x with only
k nonzero elements.

See

doc mldivide

for excellent examples.

3.1.1 Related commands
The determinant and the trace of a matrix A:

det (A)
trace (A)

The operator norm of a matrix, which is defined as

|4s -
Jaty = sup bl ety = (S| a<r<o0)
x p

is computed by
norm (A, p)
or, when p = 2,
norm ()
The condition number cond (&, p), defined as ||A||p||A7}||,, can be computed with

cond (A, p)
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(cond (a) is the same as cond (A, 2) ).
The Frobenius norm

1AlF == [ |4yl
ij

If an LU-factorization A = LU (or PA = LU, ...) is ever needed, lu is the command to search.

can be computed with

norm (A, 'fro'")

3.1.2 QR factorization

Let A be an m-by-n matrix whose column vectors are {a; € C™},j = 1,...,n. The QR factorization
of A is the form

A=QR

where R is m-by-n upper triangular matrix (R;; = 0 whenever ¢ > j) and @ is m-by-m unitary
matrix satisfying
—T —T
QQQ=QQ =I
meaning that columns g; € C™ of @ form an orthonormal (in the complex sense) basis of the vector
space C™ (over the scalar element C).
Here all “C”’s can be replaced by “R”.
Note that for any k < n, the first k& columns of A spans the same space as that spanned by the
first k£ columns of Q). When m > n, the “extra” columns ¢n+41,...,¢m are any orthonormal vectors

that are orthogonal to the first n vectors q1,...,¢q, (or ai,...,an).
The QR factorization can be computed with

[Q,R] = gr(A);

An alternative QR factorization is that @ is m-by-n (same size as A) and R is n-by-n square
upper triangular matrix. To compute such economic QR factorization,

[Q,R] = gr(A,0);

Example 3.1 (Orthogonal complement). Suppose v = (1/v/2,1/+/2,0) € R3. Find the two
vectors orthogonal to it.

Solution.
>> v = [1/sqrt(2), 1/sqrt(2) , 0]"
v =
0.7071
0.7071
0
>> [Q,~] = qgr(v)
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-0.7071 -0.7071 0
-0.7071 0.7071 0
0 0 1.0000

>> v2 = Q(:,2); v3 = Q(:,2); % the requested vectors

3.2 Eigenvalue Problems

Let A be an n-by-n square matrix. A complex number ); and a complex vector z; € C™ are a pair
of eigenvalue and eigenvector if

ij = )\jmj.

That is, the linear transformation x — Az is just a scaling in the eigenvector direction; eigenvectors
are principal directions of the transformation. For a diagonalizable matrix, there are n eigenval-
ues Ai, ..., A, which correspond to n linearly independent eigenvectors xi,...,x,. Concatenate
[122 - zp] =: V and D :=diag([A1,...,An]), one has

AV =VD.

The matrix V of eigenvectors and D of eigenvalues can be computed by
[V,D] = eig(n);
If you need only the eigenvalues d = (A1, ..., An)T

9

d = eig(a);

3.2.1 Symmetric Eigenvalue Problems

If A is symmetric (Hermitian, ar = A), A is always diagonalizable, eigenvalues are all real, and
that V is unitary. Such eigenvalue problem is equivalent to finding the critical points z; € C™ of
the quadratic function

q(z) =¥ Az with the constraint 7'z = 1.

You may check that such problem is formulated with method of Lagrange multiplier, which gives
Vq = 2Az = A\V(z'z) = 2\z, the eigenvalue problem.

If we replace the constraint Z' '« = 1 by T/ Bz = 1 for some symmetric positive semi-definite
matrix B, then the corresponding eigenvalue problem becomes

Ax = \Bz
or

AV = BVD.

This is called the generalized eigenvalue problem, which can be computed by
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[V,D] = eig(a,B);
Generalized eigenvalue problems usually arise as the above setup: B describes some (semi)norm
that gives a notion of normalization (Z7 Bz = 1). But in general [V,D] = eig (A, B) takes arbitrary
square A and B that do not need to be symmetric.

3.3 Singular Value Decomposition

The singular value decomposition (SVD) of an m-by-n matrix A is

A=USV"
where U is an m-by-m unitary matrix (with columns wuq,...,un), V is an n-by-n unitary matrix
(with columns v1,...,v,), and S is a diagonal m-by-n matrix taking the form

01
g2
S =
Om

(this is the case m < n) with singular values o1 > 09 > -+ > 0, >0 =0p41 = -+ = 0o, (or n)-

Note that r is the rank of A. SVD also takes the form

A= 01“15{ + 02”255 + e+ U'ru'rﬁ,’l'—'a
which means that A is a combination of rank-1 matrices uﬁ}" written in a descendent order of
“Iimportance”.

SVD becomes extremely important when r is small (low-rank) (or that o; drops rapidly many o;
can be viewed zero) because {o1,...,07, U1 ..., U, V1,...,0,} is a much more efficient (less amount
of data) way of expressing A. SVD is alternatively known as principal component analysis (PCA)
in statistics. SVD are widely used in signal processing, pattern recognition, recommender system,
quantum information, and many others.

In geometry and mechanics, SVD gives the polar decomposition

A=USV" = UV (VSTV") = QY

a unitary ) and a positive semi-definite Y, which are the closest rotation to A (in the Frobenius
norm) and the axial scaling.

In linear algebra SVD can be used to define the pseudo-inverse.

SVD can be viewed as a generalization of the eigenvalue decomposition for general asymmet-
ric, non-square matrices. One may see that U, S,V in an SVD satisfy (AZT)U = U(SST) and
(ZTA)V = V(87TS), which are standard symmetric eigenvalue problems.

Anyway, SVD can be computed in MATLAB with

[U,s,V] = svd(A);
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3.4 Sparse Matrices

A matrix is regarded sparse if most of the entries are zero. Typically a sparse matrix only contain
O(n) (out of n?) nonzero entries. For such matrices it is more efficient in storage and in basic
operations that we store only the locations and values of the nonzero entries. MATLAB has such
sparse matriz storage structure. As opposed to sparse matriz, an usual matrices is called a full
matriz.

>A=[2000; 0010; 0pi 0O0; 0O0O0 0]
A =
2.0000 0 0 0
0 0 1.0000 0
0 3.1416 0 0
0 0 0 0
>> S = sparse(A)
S =
(1,1) 2.0000
(3,2) 3.1416
(2,3) 1.0000
>> full(S)
ans =
2.0000 0 0 0
0 0 1.0000 0
0 3.1416 0 0
0 0 0 0
>> whos S
Name Size Bytes Class Attributes
S 4x4 88 double sparse
>> whos A
Name Size Bytes Class Attributes
A 4x4 128 double

From the above example you can see that sparse (A) turns a full matrix A to a sparse matrix,
which only stores the values and the subscripted indices of the nonzero entries. The command
full(S) turns a sparse matrix to a full matrix. Both A and s are of class double, which is what
matrix elements take values in. Note that S has sparse in Attributes.

3.4.1 Operations

All MATLAB built-in arithmetic, logical, and indexing operations can be applied to sparse matrices.
Some more common functions for sparse matrices are listed below
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spy(S) % visualize the sparsity of S

full(S) % convert to a full matrix
issparse(S) % determine if S is sparse
nnz (S) % number of nonzero elements

nonzeros (S) % returns the value of the nonzero elements

A few notes on the properties of sparse matrices:

Sum (or difference) of two sparse matrices is sparse.

Matrix product of two sparse matrices is sparse.

Inverse of a sparse matrix is usually not sparse (but MATLAB still store the result as a sparse
matrix)

Matrix exponential (or other analytic function) of a sparse matrix is usually not sparse.

3.4.2 Creating a Sparse Matrix

Let (i1,71), (i2,J2),- .-, (ir, jr) be the location of the r nonzero entries of a sparse m X n matrix
you want to construct, and let vi,...,v, be the values of those entries. Let I = [i1,i2,...,%],
J=1[j1,-..,Jr) and V = [v1,...,v,]. Then the desired sparse matrix is constructed by

S = sparse(I,J,V,m,n);

Entry locations (i, jx) may repeat. Elements of V' that have duplicated values of I and J are
added together. For example if (i, j2) = (i5,5) then the resulting S;, j, = vo + vs.

Example 3.2. Create the adjacency matrix of the following graph.

A {1 node ¢ is connected with node j
ij =

0 otherwise
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Solution. Define a matrix E with two columns which denotes all edges. Each row of E contains
the two node numbers that is connected by an edge:

E= I

ISR T OO N RN
© W JoU W WS N

17

The sparse adjacency matrix & is computed as

n = 9; % number of nodes
A = sparse(E(:,1),E(:,2),1,n,n);
A=A+ A"'; 5 A is symmetric (if A(i, j)==1 then A(j,1i)=1)

The result of A is

>> full (A)

ans =
0 1 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0
0 1 1 0 1 1 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0

Other functions for constructing sparse matrices To create an all-zero, m x n sparse matrix,

A = sparse(m,n); % which is the same as A = sparse([],[],[],m,n);
To create the identity matrix

speye(m,n) % 1's lie on the main diagonal
speye (n) % same as speye(n,n)

The function spdiags can create band or diagonal matrices, which is useful for constructing,
for example, tridiagonal sparse matrices.

3.5 Laplacian on a Regular Grid

The Laplacian or the Laplace operator L is a differential operator that widely appears in nat-
ural science and engineer, stochastic processes, networks, image processing, computer graphics,
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mathematical study of differential equations, complex analysis, and many more. For a smooth
(multi-variable) function u(z,y),

2 2
(L) @,9) = ~u(z,y) + §—yzu(z,y).

(Do not confuse with the Laplace transform, which is named after the same mathematician and often
denoted by the letter £ as well.) For a discrete function, an mxn matrix, U : [1,...,m|x[1,...,n] —
R, the result of it applied by the standard discrete Laplacian L is given by

(LU)(,5)=U@G+1,5)+U(—1,5)+ U@, +1)+U@4,5 — 1) —4U(4, j)-

One can see that L measures the difference between the “average of the immediate neighbors of
(¢,7)” and the value at (i, 7).

For (i,7) on the boundary, (i,5) = (1, ) for example, there are only three neighbors, hence we
define

LU)(1,5) =U(2,5) +U(L,j +1) + U(L,j — 1) = 3U(L, ).
Recall that in MATLAB U (%) (with only one argument) uses the linear indexing
U(sub2ind ([m,n|,i,5)) = U(4, j).

Usmg linear indexing, we may view U as a vector, and L as a matrix multiplies on it. Suppose
i1,...,14 are the neighbors of the pixel ig; then the ip-th row of LU looks like

io — 1 —4 11 1| Ui

£
S

In short, L is a matrix such that

L. — 1 if pixel ¢ and j (linear indexing) are neighbors
w 0 if pixel 7 and j are not neighbors, and i # j
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L;; = —N, where N is the number of 1’s in the i-th row of L.

A code for generating L becomes straightforward.

Laplacian.m
function L = Laplacian{m,n)
Discrete Laplacian for a regular m-by-n grid.
The ocutput L is an {(m#n)-by-(m*n) sparse matrix.

Using the linear indexing, if pixel i and pixel j are neighbors, then
L(i,3j) = 1. The diagonal coefficients L(i,j) is chosen so that row sum
of L is zero. That is, L*ones(m*n,1l) is an all-zero vector.

o0 o0 oo of & e

% Matrices I and J are defined so that I(i,3j) = 1 and J(i,3) = J

% They will be pretty useful

[I,J] = ndgrid(l:m,1:n);

% indL and indR are matrices taking values of linear indices

% the corresponding term of indL and indR will refer to pixels that are
% horizontal neighbors

indlL = sub2ind{([m,n]}, I(:,l:end-1) , J(:,1:end-1) );

indR = sub2ind([m,n)], I(:,2:end ) , J{(:,2:end ) );

% indU and indD have corresponding term referring to vertically neighboring

% pixels

indU = subZ2ind([m,n], I(l:end-1,:) , J(l:end-1,:) );

indD = sub2ind([m,n], I(2:end ,:) , J(2:end ,:) );

% Putting indL,..,indD together, corresponding entries of indl and ind2 are
% pixels that are nsighbors.

indl = [ indL(:) ; indU(:) 1;

ind2 = [ indR(:) ; indD{:} 1;

% Construct L so that L(i, j)=1 for neighboring pixels i,

L = sparse(indl,ind2,1,m»n,m*n};

L=1L+ L";

% Now build the diagonal of L, which equals to minus the row sum.
row.sum = full{sum(L,2));

L = L - spdiags{row_sum,Q,mxn,msn) ;

% Done

3.5.1 Image contour detection

Example 3.3 (Image contour detection). Let U be a matrix which take values ranging from
0 to 1, representing a gray-scale image. Now consider it applied by a Laplacian LU. For pixels
whose color changes rapidly comparing to the neighbors (like at the edge/contour of an object),
the corresponding value in LU will be large; for pixels whose color changes relatively smoothly
across neighboring pixels (like in the interior of an object), LU is small.

Suppose 'cameraman.gif' is an image file in the current folder.
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close all

clear

ele

M = imread('cameraman.gif');

% M = rgbZgray(M); <— Need this if M is a color image

U = double (M) /255; % U 1s an image with double value ranging from 0 to 1

Ul = U(:); &% column-vector-version of the image

% build Laplacian
[m,n] = size(U);
L = Laplacian(m,n);

% apply Laplacian to the image
LUl = L = Ul;
LU = reshape (LUl,m,n);

imshow ( [U, abs (LU) ])

Laplacian effectively extracts the contour of the objects (right) of the original image (left).

3.5.2 Harmonic function

A function u is said to be harmonic if its Laplacian vanishes
Lu = 0.

Likewise, we say an image U is harmonic if its Laplacian is zero
LU =o0.

That is, all pixels have value equal to the mean of the neighboring pixels. Roughly speaking a
harmonic function/image is the “smoothest” function/image (with a given boundary condition).
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3.5.3 Image inpainting/restoration

Let U be an image. Suppose the image is broken in some subset A of the pixels; for linear indices
i € N C{1,...,mn}, the data U(i) is lost. Examples of N are that it is the set occupied by
strong noises (zero-or-one noises, or the salt-and-pepper noises), and that it is some scratches on
a photo. We assume that we can identify what A is for the given broken image. Let us denote
C={1,...,mn}\ N the clean part or the unbroken region of the image.

Our goal is to assign values in the set N so that the image looks good. An reasonable assumption
is that the values assigned should be smooth across pixels, so that they do not look like noise.

In order to obtain a smooth inpainting in A we ask for U so that LU = 0 on pixels in N.
For convenience of explanation, we permute rows and columns so that we write L and U in block
matrix form

Lyn LNC] [UN]
L = , U fry
[LCN Lce Uc

where indices of the blocks correspond to the indices in N or in C. In particular, Ug are the
undamaged value of the image and Uy is to be solved. Now we formulate

[LNN LN0:| |:UN
Lenv Lec| |[Ue

. [0 <+ (LU = 0 on pixels in N)
L

The vertical bar in the right-hand side are just some values which we do not really care. Block
matrix multiplication gives
LynyUny = —LycUc. (3.1)

Note that the right-hand side is a column vector. This is a linear system with Lyxy square and
invertible. (The entire Laplacian L is not invertible because the row sums are all zero; the vanishing
row sum property does not hold anymore for a submatrix Lyy).

Example 3.4 (Destroying an image). The following function adds salt-and-pepper noise on a
given image with a given intensity.

add noise.m

function B = add_nocise (A, r)

% add-noise adds O-or-1 noise to a given image A with intensity r.
% Every pixel will be replaced by a noise with probability r. Each noisy
% pixel has 1/2 probability being black or white.

[m,n] = size(d);

random_numbersl = rand(m,n);

random_numbers2 = rand(m,n);

isNoise = random_numbersl < r;

isBlack = random_numbers2 < 0.5;

B = A;

B(isNoise) = 1;

B(isNoise & isBlack) = 0;
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close all
clear
ele

M = imread('cameraman.gif');
U

= double (M) /255;

U_.noisy = add-noise(U,0.3);
imshow ([U,U_noisy])

Now, you are asked to restore the image from the noisy image.

(Restore from noisy image). Here we restore the image from U noisy.
We will first identify the set N and C, which will be indNoise and indClean in the code.

[m,n] = size( U.noisy );

isNoise = (U.noisy == 0) | (U_neisy == 1);
find( isNcise }); % list of linear indices for noisy pixels

indNoise
indClean = setdiff( 1 : m*n , indNoise };
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Then we construct the Laplacian, extract the submatrices Ly, Lyc and so on, and solve the
linear system of Eq. (3.1)

% build Laplacian
L = Laplacian(m,n);

L_NN = L(indNoise, indNoise) ;

L.NC = L{indNoise, indClean);
U.noisyl = U.noisy(:); % column-vector-vesion of U.noisy
rhs = -L_NC * U.noisyl (indClean);

U_denoisel = U_noisyl;
U_denoisel (indNoise) = L_NN\rhs;
U_denoise = reshape( U.denoisel, m, n );

Then display the result

figure
imshow ([U-noisy,U_denoise])

For noise density 0.3 we can recover the original image almost entirely:
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For noise density 0.95,

3.6 Eigenvalue Problems for Sparse Matrices

Of a full matrix eig finds all eigenvalues and eigenvectors. For the eigenvalue problems for a sparse
matrix, use eigs instead.

In many scenarios the sparse matrix we consider is large in size and we are only interested in
a few of the eigenvalues and eigenvectors. The function eigs is equipped with efficient algorithms
dealing with such cases. There are many options in eigs which you can find in

doc eigs

We present an example that gives a few eigenvectors corresponding to the few smallest (in magni-
tude) eigenvalues. For a sparse matrix L,

[V,D] = eigs( L, 5, 'sm');

returns the 5 smallest (in magnitude) eigenvalues on the diagonal of the 5-by-5 D and the corre-
sponding eigenvectors stored in n-by-5 v.

3.6.1 Standing Waves of an L-shaped Drum

Suppose u(z,y;t) is the height of a drum membrane at the planer location (z,y) at time ¢t. Then
the oscillating membrane satisfies the wave equation

82
32 u@ ¥;t) = Lu(z,y;t)
where £ is the Laplacian defined in the previous section. This is a partial differential equation
(PDE). Now if we consider u an eigenfunction of L, that is Lu = Au for some constant A, the PDE
becomes an ordinary differential equation (ODE) in time:
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@U(w, y;t) = Au(z,y;t)
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the solution to which is a simple harmonic oscillation with frequency v/—\. (Note that eigenvalues
A of £ are < 0). These eigenfunctions u are called standing waves, because every point of the
membrane oscillates at a single coherent frequency.

Now let us solve these standing waves of the membrane of a drum.

If an image has pixel size h, then the discrete Laplacian with scaling

1
h2
is an approximation to the differential operator £. The eigenvalues of h—lzL are approximations

to those of £ and the eigenvectors, after reshaping into an image, are approximations to the
eigenfunctions of L.

As what our experience tells us, the membranes are fized on the boundary of the drum. So we
will fix vectors U to zero at pixels that corresponds to the boundary of the drum. Let C be the set
of linear indices that refers to the pixels in the boundary. Let A be the set of linear indices that
are not in the boundary. Then we solve the eigenvalue problem in the non-boundary part

1
h?
(think about it, this uses the assumption Ug = 0).

L

LynUn = AUy (3.2)

Example 3.5 (L-shaped drum). Let the drum be [0,1] x [0, 1] with [0,1/2] x [0,1/2] corner
subtracted. The drum boundary is fixed. Plot the first five standing waves.

Solution. Let the image be N x N as a discretization of [0,1] x [0,1]. Then the size of each
pixel is h = 1/N.

clear

close all

ecla

N = 50; % number of grid on each side
= 1N % grid size

The boundary set is that i, j are on the boundaries of the image union the subtracted corner
{(3,7)|i < N/2 and j < N/2}.

% Specify the boundary

[i;3] = ndgrid(l:N,;1:N);

isBdy = ((i<N/2)&(j<N/2)) | (i==N) | (3==N) | (i==1) | (3==1);
% Linear indecies pointing teo boundary and interior

indBdy = find(isBdy);

indInt = setdiff (1:N%N, find(isBdy));

Now solve the eigenvalue problem of Eq. (3.2)
% build Laplacian
L = Laplacian(N,N);
L.NN = L(indInt,indInt);
% solve the eigenvalue problem
[

V,D] = eigs( L.NN / h™2 , 5, 'sm' );
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We are pretty much done. Let us plot the solutions.

% plot the solutions
U = zeros( N, N ); % The image
for k = 1:5
subplot{ 2, 3, k!
U(indInt) = -V{:,k); % Assign image value at interior point,
% boundaries remain zero
{9 o |
view(22,22)
light
title([ 'sgrt (-\lambda) = ', num2str( sqgrt(-D(k,k)) ) 1)
end

sqrt(-}) = 6.0231 sqit(-}) =7.735 sqrt

(-3

Note that the first eigenfunction of the L-shaped drum is used as the MATLAB logo. (MATLAB
logo uses a slightly different boundary).
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Chapter 4

Ordinary Differential Equations

Every initial value problem (IVP) of an ordinary differential equation (ODE) has the standard form

y = F(t,y)
y(to) = vo
t e [to,tl]

In general,

to,t1 € R with t5 < t1
y(t) € R”

Yo € R"

F : [to,t1] x R™ — R".

Here n is the dimension of the system ODE, which depends on your ODE problem. If your ODE
problem can be written in the standard form, you can solve it numerically with MATLAB built-in
ODE solvers.

4.1 MATLAB ODE Solvers

There are a few ODE solvers in MATLAB: ode23, ode45, odell3, odel5s, ode23s, ode23t,
ode23tb. The syntaxes of each solver are basically the same. We take ode23 as an example.

[try] = ode23 (FI [tOItl] lyO);

Here, F is a function handle that takes two arguments which defines F'(t,y) for each scalar input
t and n-dimensional vector y. The returned value of F(¢,y) should be an n-dimensional column
vector. The second slot [%y, t1] is any two dimensional vector with ¢; > ¢g. In the third slot yg is
an n-dimensional vector representing the initial condition.

The output t and y are the numerical solutions. t will be an N-by-1 column vector whose
entries are a partition of the time interval [to, t1]

to=t(1) <t(2) <---<t(N) =1;.
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y will be an N-by-n matrix, so that
¥y (k, :) is an approximation to the solution y(t (k)) at time t (k).
In other words,
plot (t,y)

shows the plot of each component (of the n dimensions) of the solution with respect to time.

4.2 High-Order ODEs in the Standard Form

Example 4.1. Write the standard form of the initial value problem

u (t) + 4/ (t) + u(t) + u(t)® = cos(10t)
u(0) = 0,4/(0) = 1,
0<t<20.

Solution. For ODEs involving higher order derivatives, we introduce the variable
(7 (75)] [U(t)] 2
So

y(E) = [u”(t)} = [—u’(t) —u(t)g/(zizt):)’—kcos(mt)]
ya(t) _
[—-92(t)'—'y1(t)'— yl(t)3'+'003(10t)]

Hence we define F : [0,20] x R? — R

_ Y2
F(t,y) = [—yz —y -y + cos(lOt)} ’

The initial condition for y is yp = [u(O)] = [ﬂ . The problem in the standard form is

u'(0)

y' = F(t,y)

y(0) = yo

t € [0,20].

To solve it with MATLAB,

F=08(t,y) [ w(2); =v(2)-v(1)-y (1) 3 + cos(10+t) ];
yd = [ 0, 1 1; % Can be row vector or column vector.
[

T, Y 1 = ode23( F, (0,201, yO0 };
The solution (¢, u(t)) is approximated by
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U= Y(:,1); % U(k) approximates the solution u(T(k)) .
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Chapter 5

Cell Arrays and Struct Arrays

In this chapter we introduce two more data types in MATLAB: cell arrays and struct arrays.

5.1 Cell Arrays

Let us first look at an example,

>> C = {'Some text', {1,2}; [1,2;3,4], @sin }

C =
'Some text' {1x2 cell}
[2x2 double] @sin
>> whos C
Name Size Bytes Class Attributes
C 2%2 770 cell

You can see that replacing [ , ; , 1 by { , ; , } you can create a new type of array,
called cell array, which may contain data of different types and sizes, whereas matrices created by
[, ; , 1 can only store values of the same type. Due to the flexibility of types and sizes in each
cell element, cell arrays are useful in storing lists of text strings

>> Namelist = {'J.S. Bach'; 'W.A. Mozart';'L.V. Beethoven'}
NamelList =

'J.S. Bach'

'"W.A. Mozart'

'L.V. Beethoven'

and managing numerical arrays of different sizes

>> Samples = {randn(l,5); randn(1,100); randn(1,10000)}
Samples =

[1x5 double]

[1x100 double]

[1x10000 double]
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5.1.1 What is a Cell Array?

Cell array is a data type in MATLAB. A cell array, a value of class 'cell', is an indexed data
container which can contain data of varying types and sizes. As a comparison, MATLAB matrices
can only contain numbers of the same type, so matrices are also known as homogeneous arrays. Cell
arrays, as general lists of data, do not have a clear meaning of vectors or matrices as homogeneous
arrays do, so arithmetic operations and linear algebraic operations do not apply on cell arrays.

5.1.2 Creating Cell Arrays
You can create an empty cell array of size m-by-n with
>> C = cell(3,4)
[] [] [] []

[] [] [] []
[1 [] [1 []

You can also construct a cell array by the curly braces in which you put your desired values (similar
to how you construct a matrix)

>> C = { @sin , @cos , @tan ; @csc , @sec , @cot }

C =

@sin Qcos Qtan
@Qcsc @sec Qcot

5.1.3 Concatenating Cell Arrays
The concatenation operator for cell arrays is still the square brackets ([ , ; , 1)

>> C = {@sin,@cos,@tan;@csc,@sec,@cot}

C:
@sin Qcos Qtan
@Qcsc @sec Qcot
>> D = {@(x) x.”2 ; @(x) 1./x."2 }
D =
Q(x)x."2
R(x)1./x.72
>> [C,D]
ans =
@sin Qcos Qtan @(x)x."2
@csc @sec Qcot @(x)1./x.72

Note that if you use the curly braces { , ; , } what you get is a nested cell array
>> {c,D}

ans =
{2x3 cell} {2x1 cell}

5.1.4 Accessing Cell Arrays

There are two symbols you can use to access cells array: curly braces { } or smooth parentheses
().
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Smooth parentheses access

Let
>> C = {@sin,@cos,@tan;@csc,@sec,@cot}
Cc =
@sin @cos @tan
@csc @sec Qcot

Postfixed after a cell array variable, the smooth parentheses, in which (subscript/linear) indices are
given, returns a cell array

>> C(:,2:3)

ans =
@cos @tan
@sec Qcot

This is similar to how you extract submatrices from a matrix.
You can also set values to sub-cell-arrays by putting the expression C (- --) on the left hand side
of the assignment operator =. The values set to must be cell arrays of the same size

>> C([2;3;4]1) = {'cosecant‘;'cosine';'secant'}
Cc =
@sin 'cosine'’ @tan
'cosecant' 'secant' @cot
>> C(:,3) = {'tangent', 'cotangent'}
C =
@sin 'cosine’ 'tangent'
'cosecant' 'secant’ 'cotangent'
>> C(1) = {'sine'}
CcC =
'sine' 'cosine' 'tangent'
'cosecant'’ 'secant' 'cotangent'

Curly braces access

While () accesses to a sub-cell-array of a cell array, the curly braces {} directly accesses to the
values in the cells.

Let
>> C = {@sin, @cos, @tan;@csc, @sec, @cot}
CcC =

@sin @cos @tan

@csc @sec @Qcot

The expression , 2C2 accesses to the (2,2)-cell and returns the value within

>> c{2,2}
ans =
@sec

The result is not a cell array but the actual value @sec, which is a function handle. Particularly
you can do function handle evaluation by directly postfixing function-call parentheses

>> c{2,2} (pi)
ans =
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-1

The expression , 2:3C: accesses to 4 entries of the cell array, and therefore it is effectively a function
call which returns four outputs

>> c{:,2:3}
ans =

@cos
ans =

@sec
ans =

@tan
ans =

@cot

You may catch the multiple output values by the same way you catch multiple outputs from a
function

>> [f1,f2,£3,f4] = c{:,2:3}

f1 =
@cos
f2 =
@sec
f3 =
@tan
f4 =
@cot

You may also create another cell array out of the multiple returned values
>> { c{:,2:3} }
ans =

@cos @sec Qtan @cot

which is similar to

>> C(:,2:3)

ans =
Qcos @tan
@sec @Qcot

You can set a value to a single cell

>> c{2,3} = 'cotangent'
C =
@sin @cos @tan
@csc @sec 'cotangent’

To set values to multiple entries of a cell array,

>> D = {'cosine', 'secant'};
>> [cf:,2}] = D{:}
C =
@sin 'cosine' @tan
@csc 'secant’ 'cotangent'
where D: is an expression returning 2 values, and the expression [C{:,2}] =--- catches the output

(explained in the next section). In this case
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>> C(:,2) = D(:)

C:
@sin 'cosine'
@Qcsc 'secant’

is more natural in syntax.

@tan
'cotangent’

5.1.5 Comma-Separated Lists

A comma-separated list is a series of values (which can be evaluated from a variable or a function)

separated by commas

@sin, 0, 'Hello World',

sin(pi/2)

The evaluation of a comma-separated list looks like a function evaluation of multiple outputs

>> @sin, 0, 'Hello World', sin(pi/2)

ans =
@sin
ans =
0
ans =

Hello World

ans =

1

In fact, we should view this another way around: An expression which returns multiple outputs

returns a comma-separated list.

Typical examples of an expression returning multiple outputs are braces referencing of cell

arrays

>> A = {pi,exp(l),1i,100}

A =
[3.1416]

>> a{[2,3,41}
ans =
.7183

o~

ans
0 + 1.00001
ans =
100

[2.7183]

[0 + 1.00001i] [100]

and we should understand A{[2, 3, 41} as the comma-separated list
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a{2} , a{3} , a{4}
Comma-separated list can be put in parentheses, brackets, braces:

e Array horizontal concatenation
x = [ comma-separated list ] %creates a homogeneous array
x = { comma-separated list } %creates a cell array

e Array subscripted-index referencing
x = M( comma-separated list ) %M is a homogeneous array or a cell array
c{ comma-separated list } $C is a cell array

X

e Function (handle) input arguments
x = f( comma-separated list ) %f is a function or a function handle

e Array assignment using subscripted-indexing
M( comma-separated list ) = some value(s) or some cell array
c{ comma-separated list } = some value

e Catching multiple outputs
[ comma-separated list 1 = £( ---)
[ comma-separated list 1 = c{---}

5.1.6 Input/output argument with variable length

The expression varargin denotes an input argument list stored as a cell array. For example

myFunction.m

function [outl,outZ, wvarargout] = myFunction( x, y, varargin )

gk

% In this function varargin is a variable whose value is a cell array

When we call this function by myFunction( 0, 1, 2, 3 ) then the comma-separated list 2, 3
is passed in to myFunction, with varargin = {2, 3}. The cell array varargin is possibly empty.
This is very useful for designing functions with optional inputs.

Similarly, varargout is a cell array to be assigned in myFunction. It can take different length
or contain different types depending on what happens in the function.

The command varargin can also be used in anonymous functions.

Example 5.1. Define a function handle named evaluate which is able to perform the following
task

evaluate (f,a,b,...) returns f(a,b,...) for any function handle f
Solution.

evaluate = Q(f, varargin) f( varargin{:} );

Any inputs start from the second argument of evaluate will be collected as a cell array, which
is the value of the local variable varargin. Then varargin{:} turns the cell array into a

86




comma-separated list, which is located in the parentheses of the function call of f.

>> evaluate( @sin, pi/2 )
ans =
1
>> evaluate( @plus, 1, 1 )
ans =
2
>> evaluate( @Qquad, @sin, 0, pi )

ans =
2.0000

5.1.7 The function cellfun

Let f be a function handle which takes 1 argument (could be one array) and returns a scalar. Then

cellfun(f, {ai1,ae,---}) returns [f(a1), f(az),---1.

Example 5.2. Suppose we want to compute the mean of a few random samples with different
sample size.

>> Samples = {randn(l,5); randn(l,100); randn(1l,10000)}

Samples =
[1x5 double]
[1x100 double]
[1x10000 double]

Now to take their mean, call

>> cellfun( @mean, Samples )
ans =
0.0556
0.0477
-0.0017

If f is a function handle that takes more input arguments and returns a scalar,
cellfun(f, {ai,ag,---},{b1,be, --}) returns [f(a1,b1), f(az,b2), - 1.
If f returns non-scalar value, add an extra property-value pair

cellfun(f, {ai,ae,---},{b1,b2,---}, 'UniformOutput', 0)
returns {f(a1,b1), f(az,b2), -},

which is a cell array instead of a homogeneous array.
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Example 5.3. Define a function handle apply_ list of_functions so that it is able to per-

form
apply-list_of_functions ({f1, fo, -}, )
returns [f1(z), f2(z), -]
Solution.
apply-list_of_functions = Q(1f, x) cellfun(@(f) f(x), 1lf);
Now

>> apply-list_of_functions ({@sin,Qcos,@(x) x.°2}, pi/2 )
ans =
1.0000 0.0000 2.4674

5.1.8 Summary

1. Cell arrays allow you to store data of different types and sizes as an array.
2. The smooth parentheses C (I) indexing represents a sub-cell-array.

3. The curly braces c{I} indexing represents a comma-separated list of cell elements.

5.2 Structure Array

Structure array is a MATLAB data type. Structure arrays, like cell arrays, are containers in which

you can put values of different types and sizes.

5.2.1 What is a structure array?
Scalar structure

When you type

>> clear

>> card.suit = 'spade';
>> card.number = 5;

>> card

card =

suit: 'spade'
number: 5

you define a variable card whose value is of class st ruct. The value of card is a scalar (size (card)
is 1-by-1). This scalar struct has two fields: 'suit' and 'number', which was specified arbitrarily

by us.
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The set of fields (in this case {'suit', 'number'}) defines a structure. You can say that card
is a scalar structure with fields suit and number.

Each field of a scalar structure is a container in which you can store a value of arbitrary type or
size. To access a field of a scalar structure, use the dot “.”; for example, card.number represents
the value we have set

>> card.number

ans =

Structure array

A structure array is a homogeneous array (a matrix) of scalar structures with the same set of fields.
For example,

>> anotherCard.suit = 'heart';
>> anotherCard.number = 'Q';
>> cards = [card , anotherCard];

Now anotherCard is also a scalar struct with the same set of fields {'suit', "number'}. You
can create a matrix cards by concatenating card and anotherCard. Note that it is okay if
card.number is of class double and anotherCard.number is of class char. The value of cards
is a structure array with fields suit and number.

5.2.2 Creating a structure array

To create a structure array, the simplest way is similar to the above example: define a field by
setting some value in it. In the following example we preallocate cards as a structure array of size
52 x 1 with fields suit and number

>> clear

>> cards (52,1) .suit = [];
>> cards (52,1) .number = [];
>> cards

cards =

52x1 struct array with fields:
suit
number

Removing fields

To remove a field from a structure,

>> cards = rmfield(cards, 'suit');
>> cards

cards =
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52x1 struct array with fields:
number

Note that you have to replace cards by the result rmfield(cards, "suit') because rmfield is
a MATLAB function, which will not mutate the state of the variables in the input argument.

Adding a field to a structure

cards (1) .suit = [];
>> cards

cards =

52x1 struct array with fields:
number
suit

Defining a new field suit (which had been removed) to an element of the structure array will
effectively give the field to the entire array.
5.2.3 Accessing a structure array

Parentheses indexing

Structure arrays are homogeneous arrays (matrix), so the indexing in parentheses is exactly the
same as how it works for matrices. In particular, cards (I) is another structure array with the
same set of fields; and cards (5) is a scalar structure, which you can postfix “.number” to access
the field value.

Field access
A structure array S postfixed with “. field_name” represents the comma-separated list:

S. field_name is the same as
S (1) .field_name, s (2) .field_name,--- S (end) . field_name

Example 5.4. Assigning values to a whole deck of playing cards:
First preallocate the struct array

>> clear
>> cards (52) .number = [];
>> cards (52) .suit = [];

Let
>> suitValues = repmat( {'club','diamend', 'heart', 'spade'}, 13, 1 );

so that suitValues is the cell array

suitValues =
'club' 'diamond’ 'heart' 'spade’
'club' 'diamond' 'heart' 'spade’
'club' 'diamond' 'heart' 'spade’
'club' 'diamond’ 'heart' 'spade’
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'club' 'diamond' 'heart' 'spade’

'club' 'diamond' 'heart' 'spade’
'club' 'diamond’ 'heart' 'spade’
'club' 'diamond' 'heart' 'spade’
'club' 'diamond’ 'heart' 'spade’
'club' 'diamond’ 'heart' 'spade’
'club' 'diamond' 'heart' 'spade’
'club' 'diamond’ 'heart' 'spade’
'elub! 'diamond' 'heart' 'spade’

Next, define the cell array

>> ranks = [{'A'};num2cell( (2:10)" yi{'a'}: {0 }i{'K ' }1;
>> numberValues = repmat (ranks,1,4)

numberValues =
1;'_‘!f |P1| fl:‘l| |_ﬂ\'
[ 2] [ 2] 21 B
[ 3] s S E S5
[ 4] [ 4] [ 4] [ 4]
[ 5] [ 5] [ 5] [ 5]
[ 6] [ 6] [ 6] [ 6]
[ 7] [ 7] [ 7] [ 7]
[ 8] [ 8] [ 8] [ 8]
[ 9] [ 9] [ [ 9]
[10] [10] [10] [10]
Ll L [ i) LG
'Q’ 'Q’ 'Q" 'Qr

Now,
>> [cards.number] = numberValues{:};
>> [cards.suit] = suitValues{:};

The first line is read as that numbervalue{:} creates a comma-separated list as a multiple
output, and those outputs are caught in the LHS, which is a comma-separated list in a bracket
[cards (1) .number, cards (2) .number, -+, cards (52) .number].

You can check that all cards have been set a value forming a deck of standard playing cards

>> cards (25)
ans =

oyt

number: 'Q
suit: 'diamond'

Example 5.5. Shuffle the deck of cards

shuffledCards = cards( randperm(52) );
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5.3

Places to use structure array in MATLAB

When loading .mat files. You can save your workspace variables by save (' filename.mat")
as a .mat file. When you load the .mat file

S = load('filename.mat')

is a structure (scalar) whose fields are the variable names saved in filename.mat.

Storing a list of data with common classes of information. For example, you can store a list
of countries as a structure array with fields country name, population, capital.

Variable naming and packing. In dealing with a complicated task, there would be lots of
variables whose names are easily get messy. You can put variables under a structure so that
it is easier to infer what the variables mean and prevent potential variable naming conflicts.
For example,

my_curve.x, my.curve.y
my_surface.x, my_.surface.y, my_surface.z

uses x and y to indicate coordinate data. But under different structures they do not conflict
each other. Another advantage of this is that you can pass a single structure variable my_curve
into a function, otherwise you may have to let the function take a lot of input arguments.
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Chapter 6

Class Objects

6.1 Why Object-Oriented Programming (OOP)?

Programming using classes is called an object-oriented programming (OOP). For non-OOP pro-
grammers handling larger codes

1. duplicating codes

2. changing codes

are often the issues to worry about. A copy-and-paste of a piece of code means that when you
need to change the code, it requires you to change to multiple places in the program. The code
will always be changed, either due to bug fixing or adding new feature to the program. Hence, an
easy-to-read and easy-to-change properties of a code is very important.

OOP makes coding easier in the sense of making the program more organized and easy to change.
Tasks the program take are written as functions (or called methods) which reduce duplication of
the code — an update of the function changes everywhere your program calls that function.

6.2 What are Classes and Objects?

In an OOP you will define one or several classes. Classes are generalization to default classes or
types such as double, char and so on. Imagine a class as a “species”.

A value of the type being your customized class is called an object (also called an instance). An
object is like “an individual” of the “species”.

To define a class you define what the

e properties (class members)
e methods (class functions)

are in the class. Class properties to a class is similar to fields to a structure; properties are the
variable names in which you can store data of arbitrary kind. Class methods are functions that
belong to a class. Properties and methods of a class are like the “organs” in an individual of
your “species”(class). As what you expect, each individual has the same set of organs in its body;
likewise, each class object has those properties as slots where you can store data, and each class
object is allowed to call the class methods.
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6.2.1 Class M-file in MATLAB

In MATLAB, a class is defined in an m-file. Recall that a MATLAB m-file can either be a script,
a function, or a class; now we are looking at a class m-file.
To declare that an m-file is a class m-file, it needs to have the following structure

MyClass.m

classdef MyClass
properties

end
methods

end
end

Note that the title needs to be the name of the class, which is MyClass in this case.
For example,

Example 6.1 (A triangle class). The following is a class whose objects are triangles

Triangle.m

classdef Triangle
% Triangle is a class of triangle

%
properties
pl = [0,0] % coordinate of the 1lst vertex
p2 = [0,0] % cocordinate of the 2nd vertex
p3 = [0,0] % coordinate of the 3rd vertex
end
methods

function [elZ2,el3,e23] = edges( tri )
% edges return the 3 edges of a triangle
% the 3 returned values are in the order elZ,el3,eZ3
el2 = tri.p2 - tri.pl;
el3 = tri.p3 - tri.pl;
e23 = tri.p3 - tri.p2;

end
function A = area({ tri )}
% area computes the area of a given triangle
[el2, 13, ~] = tri.edges; % tri.edges is equivalent to edges(tri)
A = sqrt( norm(el?) "2 % norm(el3) "2 - dot(el2,el3)"2 )/2;
end
function 5 = perimeter( tri )

& perimeter computes the perimeter of a given triangle
[el2, el3, e23] = tri.edges;
5 = norm(el2) + norm(el3) + norm(e23);
end
end
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‘ end

One can see that there are three properties of the class Triangle: the coordinates of the three
vertices. These values characterize a triangle, an object of this class.

Of each triangle, we can compute the edge vectors, the area, and the perimeters. The
calculations of these geometric quantities are written as functions, which are the methods of
Triangle.

To construct a triangle,

>> t = Triangle;

Now, t is a default triangle. You can access the properties of t similar to struct arrays

>> t.pl = [1,0];
>> t.p2 = [0,2];
>> t.p3 = [0,0];

Now t is finally a triangle with three vertices (1,0), (0,2),(0,0). You can call methods using

“wo”

>> t.area
ans =
1

which is equivalent to

>> area (t)
ans =
1

In the above example, you have seen how to construct an object, access a property, and call a
method. We will explain in detail with examples what the rules are later.

6.2.2 The @-Folder

You can write a class definition in a single m-file. But you will quickly discover that if the number
of methods is a lot, and the codes in the methods are sophisticated, your class m-file would get
very messy. The way to distribute methods as function m-files is to use an @-folder.

The @-folder is a folder with name @MyClass, where MyClass is the name of your class. The
class m-file MyClass.m must be inside the folder @MyClass. Then the methods of MyClass can be
written as separate function m-files in the folder @MyClass.

For a method being separated into an m-file, you still need to declare the function in MyClass .m.
To declare a method, just write a line

[outl,out2] = myMethodl (inputl, input2)

anywhere between methods and the corresponding end. (This is obviously just an example; you
may have different number of inputs and outputs). Here myMethodl will need have a corresponding
function m-file in @MyClass

myMethod1

function [outl,out2] = myMethodl (inputl, input2)
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When you use the class @MyClass, just use it as usual when @MyClass is in your current folder.
In particular, do not go into the folder @MyClass.

Example 6.2 (Triangle class in @Triangle). Example 6.1 can be redone by the following.
Create a folder @Triangle. In the folder @Triangle/ there are three files

e Triangle.m
® area.m
® perimeter.m

which are

Triangle.m

classdef Triangle
% Triangle is a class of triangles
%

properties

pl = [0,0] % coordinate of the 1lst vertex
pZz = [0,0] % cecordinate of the 2nd vertex
p3 = [0,0] % coordinate of the 3rd vertex
end
methods

function [el2,el3,e23] = edges( tri )
% edges return the 3 edges of a triangle
% the 3 returned values are in the order el2,el3,e23
el2 = tri.p2 tri.pl;
el3 = tri.p3 - tri.pl;
e23 = tri.p3 - tri.p2;

end

% area computes the area of a given triangle

A = areaf{ tri )

P

perimeter computes the perimeter of a given triangle
= perimeter({ tri )}

wm

end
end

area.m

function A = area( tri )}

% area computes the area of a given triangle

[el2, =213, ~] = tri.edges; % tri.edges is equivalent to edges(tri)
A = sqgrt( norm(el2) "2 % norm(el3) "2 - dot(el2,el3)"2 )/2;

perimeter.m

function S = perimeter( tri )}
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% perimeter computes the perimeter of a given triangle
[el2, 13, e23] = tri.edges;
5 = norm(el2) + norm(el3) + norm(e23);
end
This leaves the class m-file clean. Here [e12,e13,e23] = edges( tri ) can be separated

out as a function m-file.
Use the class Triangle outside the folder @Triangle.

With methods separated into function m-files, the class m-file is left with clean and easy-to-read
definitions of the class, which are the properties and class methods decorated with comments.

6.3 Class Methods

A class method is a function belonging to a class. There are two different kinds of class methods

e Non-static methods

e Static methods

All methods we have seen in the previous examples are non-static methods. If you simply write
functions under methods, they are non-static methods.

There is a special non-static method — the class constructor. In many applications, one should
define a class constructor explicitly in the class m-file. If one does not define a class constructor,
like in Example 6.1, MATLAB uses a default class constructor.

6.3.1 Class constructor

A class constructor is a method

e written between methods and end.
e whose name is the same as the class.
e which has exactly one output argument.
e whose output variable should be a class object.
e whose input arguments can be arbitrary.
When we create a class object
>> obj = MyClass(---)

it is the constructor function that is called.

Example 6.3 (Writing a constructor). Let us write a constructor for Triangle

Triangle.m

classdef Triangle
% Triangle is a class of triangles

o
)
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properties

pl = [0,0] % cocordinate of the 1lst vertex
pZz = [0,0] % ceordinate of the 2nd vertex
p3 = [0,0] % coordinate of the 3rd vertex
end
methods
function tri = Triangle( varargin )
% This is the class constructor
if nargin==:
tri.pl = varargin{l};
tri.p2 = varargin{2};
tri.p3 = varargin{3};
end
end

¢

% edges return the 3 edges of a triangle
[el2,el3,e23] = edges( tri )

o

area computes the area of a given triangle
= area( tri )

el

aP

perimeter computes the perimeter of a given triangle
= perimeter( tri )

w

end
end

To create a triangle,

>> tri = Triangle([1,0],[0,2]1,([0,0]);

Note There is no command this in MATLAB that refers to “this object” as in C++ or Java.
So we have to write explicitly tri.pl = ... instead of just writing p1 =
6.3.2 Non-static methods

Every non-static method (except for the constructor) should be a function with
e at least one input argument

e one of the input arguments (usually the first argument) being an object of this class

A method
function [outl,out2] = myMethod( obj,in2,in3 )
can be called by the syntax
[outl,out2] = obj.myMethod( in2, in3 )
which would be translated back to [outl,out2] = myMethod( obj, in2, in3). In particular,

obj.myMethod( in2, in3 ) is a function call with 3 input arguments.
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For a typical class (handle class is the exception), methods, like all other functions, do not
mutate the input arguments.

Int.m

classdef Int
% a class of integer
properties

value = 0

end

methods
function plus_one (obj)

obj.value = obj.value + 1;

end

end

end

You will see that plus_one will not change the property values in the object.

>> i = Int;
>> i.value = 1;
>> i.plus_one;
>> i.value
ans =

1

6.3.3 Public/private methods

In Example 6.1 and Example 6.3, all methods (area, edges, perimeter and the constructor
Triangle) are public methods. As the name suggests, these methods can be called in the command
window, some script, or codes in some other class or functions. You can set a method to be private,
which means that the function can be called only by methods in the same class; in particular, you
cannot see the private methods when you use the object outside.

To set methods private, put them between another block of methods-end pair, with a specifi-
cation on methods attribute as follows

classdef SomeClass

properties

% public properties

end
methods

% public methods go here
end
methods (Access = private)

% private methods go here
end

end

Note that the constructor has to be a public method.
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Example 6.4 (Private method). Let us make the method edges private.

Triangle.m

lassdef Triangle

% Triangle is a class of triangles
properties
pl = [0,0] % coordinate of the 1lst vertex
pz2 = [0,0] % coordinate of the 2nd vertex
p3 = [0,0] % coordinate of the 3rd vertex
end
methods

function tri Triangle( wvarargin )
% This is the class constructor
if nargin==3
Eri el
tri.p2
tri.p3
end
end

varargin{1};
varargin{2};

varargin{3};

e

area computes the area of a given triangle
= area( )

h=

tri

perimeter computes the perimeter of a given triangle

o

5 = perimeter( tri )

end

methods (Access = private)
% edges return the 3 edges of a triangle
[el2,el13,e23] = edges( tri )

end

end

Now, area and perimeter can still use edges. But for users using this class Triangle, they
can only call public methods area, perimeter, and the constructor.

For helper functions that are not going to be directly called by the user, make them private.
It is always nice to pack your code as a class with a clean public interface and bunch of invisible

private helper methods. This idea is called encapsulation, which is one of the key features of

object-oriented programming.

6.3.4 Static methods

Static methods are methods that do not depend on the state of the objects. They are simply
functions defined under the class. The input arguments of a static method should not be an object

of the class.

To make a method static, put it under

methods (Static)
% static methods go

°

end

here
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Example 6.5 (Static methods). We continue the Triangle class. Let us add a method
A = side2area(11,12,13) which computes the area of a triangle with lengths of the sides
11,12, 13. Such computation does not depend on any class object, so it should be written as
a static method.

Triangle.m

classdef Triangle
% Triangle is a class of triangles
%

properties

pl = [0,0] % coordinate of the 1lst vertex
p2 = [0,0] % coordinate of the 2nd vertex
p3 = [0,0] % coordinate of the 3rd vertex
end
methods

function tri = Triangle( varargin )
% This is the class constructor
if nargin==3
tri.pl = varargin{l};
tri.p2 = varargin{2};
tri.p3 varargin{3};
end
end

I

e

area computes the area of a given triangle

h

= area( tri )

% perimeter computes the perimeter of a given triangle
= perimeter( tri )

3]

end
methods (Access = private)
% edges return the 3 edges of a triangle
[el2,e13,e23] = edges( tri )
end
methods (Static)
function A = side2area(ll,12,13)
% sideZarea computes the area of the triangle with given edge lengths
s = (11 + 12 + 13)/2;
A = sgrt( s+(s-11)+(s-12)=*(5-13) );
end
end
end

To call the static method,
>> Triangle.side2area(l,2,sgrt (5))
ans =
1

Static methods are just functions with function names prefixed “ClassName.”.
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When to use static methods?

The rule of thumb is, ask yourself whether the call of the function make sense if no object has been
constructed. If the answer is positive, make is a static method; otherwise, make it non-static.

It does not make sense to call the function area, which computes an area of a triangle, if there
is no triangle constructed. Thus area is non-static. When there is no triangle object created, it
still makes sense to the convert 3 given edge lengths to an area. So side2area is static.

Named constructors

It makes a lot of sense to call a function which creates a class object when there were no class
object created. These functions are called named constructors, which are static functions with
output value being a class object. They are not the class constructor, which is the function that
has the same name as the class.

Example 6.6 (Named constructors). Let us define another static method

methods (Static)

function A = side2area(l1,12,13)

% sideZarea computes the area of the triangle with given edge lengths
s = (11 + 12 + 13)/2;
A = sqgrt( s+({s5-11)+(s-12)=*(5-13) );

end

function tri = Eguilateral (a)

% Equilateral constructs an equilateral triangle with side length a
tri = Triangle( [0,0], [a,0]1, [a/2,sgrt(3)=a/2] );

end

end

>> tri = Triangle.Equilateral (2);
creates a triangle tri which is equilateral.
>> tri.area

ans =
1.7321

6.3.5 Operator Overloads

When defining class methods, it is okay, and in fact recommended, to name a method the same as
some MATLAB built-in function. For example, you can have a method under the class MyClass
that has the name plus, which has two inputs

function obj3 = plus( argl, arg2 )

Since methods belong to your class there is no worry of conflicting with the built-in ones. In this
case, you can create objl obj2, instances of MyClass, and perform

obj3 = objl + obj2;
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MATLAB always translates a + b as plus (a,b) and thus call your implementation.
In this case we overloads the plus operator with new feature that works for our class.

Example 6.7. We add another method in Triangle

methods
function tri3d = plus(tril,tri?2)
% plus computes the sum of two triangles
tri3 = Triangle;
tri3d.pl = tril.pl + tri2.pl;
tri3.p2 = tril.p2 + tri2.p2;
tri3.p3 = tril.p3 + tri2.p3;

>> tril = Triangle.Equilateral (1l);
>> tri2 = Triangle.Equilateral (2);
>> tri3 = tril + tri2;

6.4 Handle Classes

Recall that in Section 6.3.2 we said that methods are like functions which do not modify the state
of the input variable, including the class object. But sometimes we do want the mutation of object
state to happen. Making your class as a handle class, the class methods are allowed to change the
state of the class object.

To make your class a handle class, simply write

classdef MyClass < handle

end

on the first line.

Example 6.8. The following class is defined so that the property values can be modified from
the class methods.

Int.m
classdef Int < handle
% a class of integer
properties
value = 0
end
methods
function plus_one (obj)
cbj.value = obj.value + 1;
end
end
end
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>>
>>
>>
>>

ans

What happens here is that i is just a handle which refers to an object somewhere back in the
memory. From a handle, the syntax of accessing the property values of the object is exactly the
‘. propertyName”. When plus_one (i) is called, it is the handle
that is copied to the local variable obj; when the function assign value to obj.value, it really
modify the value somewhere back in the memory. Hence the value of the property changes even

same as non-handle object — use

i = Int;
i.value = 1;
i.plus_one;
i.value

2

¢

after we exit the function.

Since these objects are handles, not the real object itself, something funny may happen

Example 6.9. Continued from Example 6.8.

When we call i2 = i1, it is only the handle that is copied to i2. After that both i1 and i2
refers to the same class instance. So a change of state of the object can be seen from both i1

and i2.

>>» i1 = Int;
>> il.wvalue = 5; % now il is 5
>» i2 = i1; % let i2 = i1,
>> i2.value % 12 is also 5 as expected
ans =
5

ap

Add 1 te il
both i1 and 12 become 6

>> il.plus_cne;
>> i2.value
ans =

6

o

The following example is a more appropriate usage of handle class.

Example 6.10 (A class for solving ODEs). The following class

ODEProblem.m

classdef ODEProblem < handle
% ODEProblem is a class for solving ODE problems
%

properties
odeFun % a function handle with input (t,y)
tspan % a two-vector

v0 % initial condition
T % solution time grid
Y % solution wvalues
end
methods
function ode = ODEProblem(odeFun, tspan,y0)
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end

% class constructor
ode.odeFun = odeFun;
ode.tspan = tspan;
ode.y0 = y0;

end

function reset (ode)
% reset cleans up the solution
ode.T = [];
ode.¥ = [];

end

function solve {ode, solver)
% solve solves the ode problem with a given solver.
% The sclver is a function handle, e.g. @Goded5
[ode.T,ode.¥Y] = solver (ode.odeFun, ode.tspan,ode.y0);

end

function plot (ode)
% plot plots the solution
plot (ode.T,ode.Y)

end

end

The usage of such class is intuitive

>>
>>
>>
>>
>>
>>

ode

ode.
.plot
ode.
ode.
.plot

ode

ode

= ODEProblem (@ (t,y) -y, [0,2], 5 );
solve (Qode23)

reset
solve (Qodedb)

Note that when we call solve or reset, we really change the state of ode.

The great advantage of using handle classes is

e No copying of class property data when calling a method.

e Ability of modifying object state by function calls.

When to use handle classes

Use handle classes

if

e Every object exists uniquely, and there is rarely copying an object going on.

For example,

e Characters in a role playing game — they exist uniquely in a game. And you can call

and change the state of the character. (If it is not a handle object, you will need to call
monsterl.go_to_sleep and keep copying and replacing the character whenever
it makes a move).

monsterl =

e The pack of a big program — there is only one universal class object in the program, and there

monsterl.go_to_sleep

are usually a lot of data that you do not want to copy. Like in the ODE example

105




ode.solve (Roded5)

and change some state in the object.

6.5 Subclasses

A subclass MySubClass of a superclass MySuperClass is a class whose class properties and methods
are inherited from the superclass, and usually you put more class properties and methods in the
subclass.

To declare a class being a subclass of a class

classdef MySubClass < MySuperClass

In particular, all handle classes are subclasses of the abstract handle class.

Subclasses can use the public and protected (methods with Access = protected) methods of
the superclass. It also inherits the properties of the superclass. You can overwrite a superclass
method or the default value of a superclass property.

6.5.1 When to make a class a subclass of another class?

Ask yourself whether it makes sense to say “SubClass is a SuperClass”. For example, you
can make a class EquilateralTriangle as a subclass of Triangle, with formula of perimeter
overwritten to an easier one. It make sense to say “An equilateral triangle is a triangle”.

Example 6.11 (Role playing game). In the world of role playing game you will typically write
a class

classdef LivingThing < handle
properties
health = 100
end

end

Then

classdef Human < LivingThing
properties
name = 'anonymous'

age

end
end

classdef Warrior < Human
properties
weapon

end
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end

whereas

classdef Sheep < LivingThing
properties

end

end

Now, a human is a living thing, which has class properties
e health
e name
e age.

Warriors in addition has a weapon.
Sheep are living things so it has health, but they probably do not have a name.

6.5.2 Call the methods in the superclass

Sometimes you will overwrite superclass methods, so the implementations of the method of the
subclass is different from that of the superclass. To call the superclass method from the subclass,

methodName@MySuperClass ( inputArguments )

6.5.3 Call the superclass constructor

Sometimes you want to write the constructor of the subclass which calls the superclass constructor
with particular input arguments

obj = obj@MySuperClass( inputArguments )

Example 6.12 (Spring-mass system as a subclass of the ODEProblem). First of all, a spring-
mass system is an ODE problem. Hence it make sense to put it as a subclass of ODEProblem

MassSpringProblem.m

classdef MassSpringProblem < ODEProblem
properties
m = 13
k= 1;
end
methods
function ode = MassSpringProblem
ode = odefODEProblem( [], [0,1], [0;0] );
ode.build
end
function build{ode)
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ode.odeFun = @(t,y) [v(2) ; -ode.k/ode.m * y(1)];

Here is a script which you can try out

o©

%

ode = MassSpringProblem;

ode.y0 = [1;0];
ode.tspan = [0,10];

ode.solve (@Godedb)

ode.plot

ode.reset
ode.k = 16;
ode.build;

ode.solve (@oded5)
ode.plot

6.6 Summary

The key features of OOP are

e Encapsulation — you can pack functions and variables into one or several organized class with
a friendly and high-level interface

e Inheritance — you can create subclass from a superclass so that you don’t need to repeat
implementations of shared methods.

e Polymorphism — you can have an abstract class that supports different task when you subclass
from it; for example ODEProblem can become a spring-mass problem or many other ODE
problems.

These features reduce a lot of duplication of codes, and make the program much neater. They also
make coding much easier when the code needed to be modified.
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Chapter 7

Graphical User Interface

A user interface (UI), or a graphical user interface (GUI), is a graphical display in one or more
windows which enable users to perform interactive tasks. Controls contained in a GUI window may
include menus, sliders, push buttons and keyboard/mouse detections (just named a few).

7.1 How does a Ul work?

Uls are made of Ul components. These components can be objects under a figure such as push
buttons, text boxes, axes, or they can be figures themselves. Ul components wait for a user to
perform certain manipulation, and typically, such events of manipulations will trigger an execution
of a callback function. This kind of programming is known as event-driven programming.

7.2 UI Control objects

uicontrol is the function which creates a Ul control object. UI control can be a text box, a
pushbutton, a slider, or many more listed later. Each UI control occupies a region in the figure
window. When creating a UI control object, you will typically specify the

1. style (what kind of control (pushbutton? slider?))
2. units (what unit is using when specifying position later)
position ([x,y,width, hight])

string (optional, the text displayed on the control)

AN

value (state of the control, such as for slider)
6. callback (callback function, a function handle)
of the UI control. The styles of UI controls include
e pushbutton
e togglebutton

e checkbox
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e radiobutton
e slider

o cdit

o text

e popupmenu
e listbox

e frame

Here is an example for creating a push button

Example 7.1. The following function creates a figure with a push button in it

gui_example.m

function gui_example
h¥Fig = figure;

hButton = uicontrol (hFig,... % this UI object lies under hFig
'Style', 'pushbutton',... % it is a pushbutton
'Units', 'normalized',... % the unit is relative position in the figure window
'Ppsition', [0.6,0.5,0.4,0.2],... % bottom-left corner at (0.6,0.5) w=0.4, h=0.2

'String'; 'Push Me!!
)i
end

Now,

>> gui_example

You can push the button but nothing would happen. There is no callback function set to this UI
control.
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7.3 Callback functions

Example 7.2. Let us create an axes at the left half of the figure window. Now add a callback
function to the pushbutton

gui_example.m

function gui_example

hFig = figure;

hButton = uicontrel (hFig, ...
'Style', "pushbutton', ...
'Units', "normalized', ...
'‘Position', [0.6,0.5,0.4,0.27, ...
'String!; 'Push Me!',
'CallBack',@buttonCallBack
)i

haxes = axes(...
'Parent',hFig, ...
'Units', '"normalized',...
'Position',[0.1,0.1,0.4,0.8]1);

end

function buttonCallBack( uiobj, eventdata )
plot {rand, rand, '+")

hold on

end

When you push the button, the function buttonCallBack is executed, with its two input
argument uiobj == hButton (the object that calls the function) and a struct eventdata (in
this case eventdata = [])

>> gui_example

A callback function for a UI control takes two arguments

1. An object handle — This is the handle of the UT control object that calls this callback function.
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2. A structure — This is the event data which records what kind of events that triggers this
function.

Example 7.3 (Keyboard detection). The property 'WindowKeyFPressFcn' can be set to a
callback function. In the following example, the callback function is an anonymous function.
figure('WindowKeyPressFen', @ (~,eventdata) display (eventdata))

It will create a figure which detects keyboard input. As you press a key on your keyboard, you
see the value of eventdata.

In a more complicated callback function for keyboard detection, you may have a switch
statement like

switch eventdata.Key
case 'escape'

case 'a'

end

Example 7.4 (Value of a slider). The following example creates a slider. When you change
the state of the slider, the 'value' property changes. You may want to use the value in the
callback function, in which case you use get (¢bj, 'Value') where obj is the handle to the
slider, the first input argument in the callback function.

nicontrol (*Scyle!, elddert, ..
"Units', "ngrmalized’, ...
'Position'o [0-005; 15001 15 s
'"CallBack"', @({obj,~) display(get(obj; 'Value'})) )

7.4 Keyboard detection

First, see Example 7.3. The figure window property 'WindowKeyPressFcn' is by default set to
the empty callback string ' '. If you set that to a callback function, say myKeyFcn (~, eventdata),
such function will be executed when you press a key on the keyboard, with eventdata.Key being
the key that is pressed.

Example 7.5. The following GUI shows an animation of propagating sine wave, and the user
is allowed to control the wave and animation by

e left arrow — increase the frequency

e right arrow — decrease the frequency
e up arrow — increase the amplitude

e down arrow — decrease the amplitude

e spacebar — pause/play the animation
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e escape — close the window
The main function will
1. create a figure and an axes.

2. declare all flags (for denoting whether the animation is paused) and variables (frequency,
amplitude).

3. set the 'WwindowKeyPresskcn' callback.

4. jump into infinite loops, which include the animation and a small pause pause (0.01),
which is the small break that allows Uls to detect events.

wave_viewer

function wave.viewer
hFig = figure;
hAxes = axes;

o
=

Create figures and axes

oe
N

flag.play = true; Declare flags and variables

flag.quit = false;

wave.freq = 1;
wave.amp = 1;

t = 0;

x = linspace(-5,5);

set (hFig, 'WindowKeyFPressFcn', @myKeyFen) % 3. Set the keyboard callback

e
1=y

while ~flag.quit Jump into infinite loops
while flag.play
plot (x, wave.amp = sin(wave.fregx (x-t)) );
axis| [=5;53—2527)
drawnow
t =t + 0.05;
pause (0.01)
end
pause (0.01)
end
delete (hFiq) ;

function myKeyFen( ~ , eventdata )
switch eventdata.Key
case 'leftarrow'
wave.freq = wave.freq - 0.1;

case 'rightarrow
wave.freq = wave.freg + 0.1;

case 'uparrow'

wave.amp = wave.amp + 0.1;

down oW

wave.amp = wave.,amp - 0.1;

case 'space'
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flag.play = ~flag.play;

1 '

case 'escape
flag.quit = true;
end
end

end

7.5 Mouse Detection

The following GUI serves as a great example for mouse detection.

Example 7.6 (Drawing board). The following function allows a user to draw curves freely on
an axes.

drawingGUI

function drawingGUI

% Creates all handles

hFIG = figure;

haXES = axes;

hPLOT{1} = plot(nan); % hPLOT will eventually be a cell array
% each cell element is a handle of a curve

hold on

axis equal

title('Draw a curvel!l')

set (hAXES, 'DrawMode ', 'fast')

set (hAXES, 'Box', 'on', 'XLimMode"', 'manual', 'YLimMode', 'manual’')

set (hPLOT{1}, 'LineWidth', 2)

% Declare variables
plot_count = 1; % plotting the i-th curve
s [, % coordinates for the current curve

ysam [

a

% Default callbacks

set (hFIG, 'WindowButtonDownFen', @startDrawing);
set (hFIG, 'WindowButtonUpFen','");

set (hFIG, 'WindowButtonMotionFen','");

functien startDrawing(src,evnt)

set (hFIG, 'WindowButtonMotionFeon', @mouseMovingCallBack) ;
set (hFIG, 'WindowButtonUpFen',@stopDrawing) ;
drawhAFoint

end

functicn steopDrawing(scr,evnt)
set (hFIG, 'WindowButtonMotionFen','")

% get ready for the next plot
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plot_count = plot_count+l;

hPLOT{plot_count} = plot (nan);

x = [1;

y = [1;:

set (hPLOT{plot_count}, 'LineWidth',2, 'Color’',rand(1,3))
end

functien mouseMovingCallBack (src,evnt)
drawhFPoint

end

function drawAPoint

cp-full = get (hAXES, 'CurrentPoint'); % the full 3D coordinates
cp = cp-full(l,[1,2]1); % the 2D coordinate

®x = [giep(l)];

y = [yicp(2)];

set (hPLOT{plot_count}, 'XData',x, '¥Data',y)

drawnow

end

end

To detect mouse button clicks and mouse motions, it is the properties

'"WindowButtonDownFcn'
'WindowButtonUpFcn'
'WindowButtonMotionFcn'

of a figure to be set to some callback function handles. These properties are the items you will
look up in docsearch figure properties if you want to learn more about various kind of mouse
manipulations.

To detect the mouse coordinate in an axes, call

get (gca, 'CurrentPoint ')

T N1 2
T2 Y2 22
3D axes that coincides with the mouse cursor. 2D axes are 3D axes viewed from the top, so the
2D coordinate of the mouse cursor is simply the components (z1,y1).

which will return a 2 x 3 matrix [ ] , the two 3D coordinates on the bounding box of the

7.6 GUIDE Tool

In every of above examples, one writes the GUI from scratch. An alternative of designing a GUI is
to use the GUIDE tool.

Type
>> guide

and a GUI design wizard appears. You can design your own GUI with a MATLAB GUI interface.
After having all your GUI components settled, save the file, which will generate a .m file and a
.fig file. In the m-file, a halfway complete function for the GUI is written. All you need to do is
to fill in the callback functions opened for you.

Using these GUI tools appropriately, you can be a productive MATLAB GUI designer .
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