KÜLE YÜZEĞİ

Verilen bir sabit noktadan eşit uzaklıkta bulunan noktaların geometrik yerine küre denir. Sabit noktaya kürenin merkezi, sabit uzaklığı da kürenin yarıçap adı verilir.

Merkez $M(a,b,c)$ ve yarıçap r olan kürenin denklemi bulalım:

Küre yüzeyi üzerinde herhangi bir $P(x,y,z)$ noktası verilse,

$$||MP|| = r$$

olarak günden

$$<\vec{MP}, \vec{MP}> = r^2$$

$$\Rightarrow <(x-a, y-b, z-c), (x-a, y-b, z-c)> = r^2$$

$$\Rightarrow (x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

küre denklemi olur. Bu ifade audur ve düzenlenirse,

$$x^2 + y^2 + z^2 - 2ax - 2by - 2cz + a^2 + b^2 + c^2 - r^2 = 0$$

bulunan $D = -2a, E = -2b, F = -2c, G = a^2 + b^2 + c^2 - r^2$ alınır.
Lüre denklemi,
\[x^2 + y^2 + z^2 + Dx + Ey + Fz + G = 0 \]

ekleme bu olur, kürren merkez \(M(0, b, c) = \left(-\frac{D}{2}, -\frac{E}{2}, -\frac{F}{2}\right) \) dir.
Yarıçap ise \(G = a^2 + b^2 + c^2 \) den \(r = \frac{1}{2}\sqrt{D^2 + E^2 + F^2 - 4G} \) olur.

Örnek

Merkez \(M(1, -1, 2) \) ve yarıçapı \(r = 3 \) olan kürrenin denklemi

yazmak.

Görsel:
\[(x-1)^2 + (y+1)^2 + (z-2)^2 = 9 \]
\[\Rightarrow x^2 + y^2 + z^2 - 2x + 2y - 4z - 3 = 0 \]

Bulunur.

Örnek

\[x^2 + y^2 + z^2 - 4x + 2y = 0 \]

Kürrenin merkezini ve yarıçapını bulunur.

Görsel:
\[M(2, 1, 0) \]
\[a = -4, b = 2, c = 0, G = 0 \]
\[r = \frac{1}{2}\sqrt{D^2 + E^2 + F^2 - 4G} = \sqrt{3} \]

Kürenin Parametril Denklemi

\[\cos \alpha = \frac{x}{r} \Rightarrow x = r \cos \alpha \]
\[\sin \alpha = \frac{y}{r} \Rightarrow y = r \sin \alpha \]
\[\cos \beta = \frac{z}{r} \Rightarrow z = r \cos \beta \]
\[\sin \beta = \frac{r}{r} \Rightarrow r = r \sin \beta \]

O halde, \(x = r \cos \alpha \sin \beta, y = r \sin \alpha \sin \beta, z = r \cos \alpha \) olur. Kürenin parametril denklemi,

\[\mathcal{O}(\alpha, \beta) = (r \cos \alpha \sin \beta, r \sin \alpha \sin \beta, r \cos \alpha) \]
Bir Küre ile Bir Doğrunun Durumu

\[x^2 + y^2 + z^2 + Dx + Ey + Fz + G = 0 \]

dürümü ile \(d \). \(\frac{D}{\sqrt{D^2 + E^2 + F^2}} = \lambda \)
dışı geçer. Doğru ile küre'nin birbirine göre durumu için iki denklem ortak olması gerekir:

\[(x + \lambda a)^2 + (y + \lambda b)^2 + (z + \lambda c)^2 + D(x + \lambda a) + E(y + \lambda b) + F(z + \lambda c) + G = 0 \]

ve bu denklem düzensiz \(\lambda \) ya göre \(2. \) dereceden olmak üzere

\[\lambda^2 + B\lambda + C = 0 \]

denklemi elde edilir. \(\Delta = B^2 - 4AC \) olmak üzere.

1) \(\Delta > 0 \) ise denklem önceden iki kökü vardır. Yani doğru küreyi iki noktası keser.

2) \(\Delta = 0 \) ise denklem önceden iki kökü vardır. Yani doğru küreyi tek noktası keser. Bu durumda doğru küreye teğettir.

3) \(\Delta < 0 \) ise denklem önceden reel kök yoktur. Yani doğru küreyi kesmez.

Örnek

\[z = \frac{y - 1}{2} = \frac{2 - 2}{3} = \lambda \]
doğruluş ile \(x^2 + (y - 3)^2 + (z - 2)^2 = 4 \) küresinin

capakılımını inceleyelim.

Gözüm:

\[z = \lambda, \ y = 2\lambda + 1, \ z = 3\lambda + 2 \]

ıddeleri küre denklarında yapalım.

\[\lambda^2 + (2\lambda + 1)^2 + (3\lambda + 2)^2 = 1 \]

burada da \(9\lambda^2 + 14\lambda + 10 = 0 \) tulinur. \(\Delta = 0 \) ve \(\lambda = \frac{4}{3} \) dir.

\(\lambda = 0 \) iki ki \(x = 0, \ y = 1, \ z = 2 \) olup kesim noktasları \(z_1(0, 1, 2) \)

\(\lambda = \frac{4}{3} \) iki ki \(x = \frac{4}{3}, \ y = \frac{5}{3}, \ z = \frac{26}{9} \) olup kesim noktasları \(z_2(\frac{4}{3}, \frac{5}{3}, \frac{26}{9}) \)

olar.
Örnek

\[x^2 + y^2 + z^2 + 2x + 4y - 6z + 2 = 0 \] küresi ile \(\frac{x}{2} = \frac{y}{5} = \frac{z}{1} = \lambda \) doğrultunun birbirine göre durumunu inceleyiniz.

Aletim:

\[\lambda = 2 \lambda, \quad y = 3 \lambda + 1, \quad z = \lambda - 1 \] ifadesi küre denkleminde yarısırı,

\[4 \lambda^2 + (3 \lambda + 1)^2 + (\lambda - 1)^2 + 4 \lambda + 4 (3 \lambda + 1) + 6 (\lambda - 1) + 2 = 0 \]

Bu ifade düzenlenirse,

\[x^2 + y^2 + 1 = 0 \]

ölçül edilir.

\[d = -3 \leq 0 \] olsun denklemin toluğu vardır.

O halde doğru kürge kesmez.

Örnek

\[x^2 + y^2 + z^2 - 2x - 2y - 6z + 6 = 0 \] küresi ile \(\frac{x}{2} = y = z = \lambda \) doğrultunun birbirine göre durumunu inceleyiniz. (cevap: doğru kürge P(2,1,1) noktasında toplandır.)
Bir Küre İle Bir Düzenin Darbési

$x^2 + y^2 + z^2 + Dx + Ey + F + G = 0$ düzeninin kürsüne göre durumuna incelemek için dinlenmesi ortak uygular. Bunun sonucunda arakoitostı,

1) Bir cemberdir,
2) Bir naktadır (bu durumda düzlem kürse tegettir)
3) Boz kümüstir (bu durumda düzlem kürse kesmez)

Örnek

$x^2 + y^2 + z^2 - 2x - 6y + 2z - 4 = 0$ kürsünün nöguz düzenine arakoitostı bulunur.

Görum:

Kürse denkleminde $z = 0$ yonune $(x+1)^2 + (y-3)^2 = 9$ olsarı.
Bu ise merkezi $M(-1, 2, 0)$ ve yarıçapı $r = 3$ olan cemberdir.

Örnek

$x^2 + y^2 + z^2 - 2x - 6y + 2z - 3 = 0$ kürsünün $T(1, 1, -1)$ naktasındaki teget düzlemının denklemini bulunur.

Görum:

$f(x, y, z) = x^2 + y^2 + z^2 - 2x - 6y + 2z - 3 = 0$ alalım.

$\nabla f|_T = \begin{pmatrix} 2x-2, 2y-6, 2z+2 \end{pmatrix}_T = (2, -2, 2 T - 2)$
$\Rightarrow \nabla f|_T = \nabla = (0, 3, -3)$ olup düzlemın
denlemi

$0x + 3y - 3z + d = 0$ dır.

T düzleme ait olduğundan,

$3 + 3 + d = 0 \Rightarrow d = -6$

$\Rightarrow y - z - 2 = 0$ bulunur.
Ondokuz Mayıs Üniversitesi
Fen Edebiyat Fakültesi
Matematik Bölümü
Dijital Ders Platformu

Diferansiyel Geometri II

Prof. Dr. Emin KASAP

Ders 11