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Abstract
3D coordinate transformation is frequently encountered in geodesy applications. In addition, it is frequently encountered in 
computer vision, robotics, engineering surveying, and GiS applications. Seven parameter Helmert transformation is one of 
the widely used 3D transformation algorithms. Nowadays, the quaternion algorithms are finding increasingly common usage 
due to some disadvantages of Helmert transformation based on Euler angles; in this article, a new 3D Cartesian coordinate 
transformation with the dual quaternion method is explained in detail, and its advantages over the classical transformation 
problem algorithm are emphasized. Quaternions are not preferred in 3D transformation applications due to the complexity 
of the subject. As a result, readers generally stay away from the subject of quaternion. In this article, a new dual quaternion 
algorithm with eight parameters (DQA) is presented. In addition, a MATLAB function DQA_3d_transformation will be 
introduced in the article so that readers can easily perform 3D transformations with dual quaternions. We hope that after 
reading this article, the reader’s perspective on dual quaternions may change slightly.

Keywords 3D similarity transformation · Dual quaternion · Euler rotation angle · Least squares method, Gimbal lock

Introduction

3D coordinate transformations play an important role in 
many fields of geodesy, photogrammetry, robotic, and com-
puter vision. There are a wide variety of transformation 
models, for example, Bursa–Wolf and Molodensky–Bade-
kas. They are also called similarity or seven-parameter 
transformations and they combine a scale change, three 
axes-rotations, and three origin-shifts in a practical math-
ematical model of the relationships between points in two 
different 3D coordinate systems. They differ slightly in their 
operation; the Molodensky–Badekas transformation uses a 
centroid but the Bursa–Wolf transformation does not; hence, 
additional information (the centroid coordinates) is required 
when using the Molodensky–Badekas transformation; a fac-
tor that makes the Bursa–Wolf transformation more popular 
(Deakin 2006). Even wider 3D coordinate transformation 
models are available. Most generally, we can talk about the 

twelve parameter affine transformation: three translations, 
three Euler rotation angles, three scale factors, and three 
skew (affinity or non-perpendicularity) parameters along 
x, y, z coordinate axes (Amiri-Simkooei 2018; Even-Tzur 
2018). In the widely adapted seven parameter-similarity 
transformation, (the so-called Helmert transformation in 
geodetic studies), no affinity is involved and only one com-
mon scale factor is defined. There are also some other trans-
formations such as 9-parameter affine and 8-parameter affine 
transformations (Andrei 2006; Even-Tzur 2018, 2020; Wang 
et al. 2018; Závoti and Kalmár 2016; Zeng 2015).

Rotations through all three axes, 3D vector displacement, 
and single-scale change are calculated in order to transfer 
points from one system to another. These seven transfor-
mation parameters are known as the seven-parameter trans-
formation or Helmert transformation problem, which is a 
well-known transformation, not only in engineering but also 
in other discipline sciences (Zeng and Yi 2011).

Jitka (2011) presents a dual quaternion algorithm for 
geodetic datum transformation. Its solution is complex and 
the solution process of transformation is not explicit. Zeng 
et al. (2018) propose a DQA solution with closed formula. 
This solution needs an eigen-value decomposition algorithm. 
Uygur et al. (2020) describe how to solve the symmetric and 
asymmetric 3D similarity transformation based on quater-
nion (not dual quaternion). In a recent study, Ioannidou and 
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Pantazis (2020) include a 9-parameter iterative DQA algo-
rithm. In addition, the results of Helmert transformation 
method, quaternion method, and dual quaternion method are 
also compared in that study. As a result of the comparison, 
they could not mention a certain superiority of the methods 
over each other. It is seen that 3D similarity transformation 
has been used in the fields of geophysics and geology in recent 
years, such as the estimation of geo-hazard (Abdel Azeem 
et al. 2014), empty region identification (Dong et al. 2021a), 
and detection of abnormal regions (Dong et al. 2021b)

The most important part of the transformation problem 
is the stage of determining the transformation parameters 
between two systems (reverse problem). The transforma-
tion parameters are realized by using control points whose 
coordinates are known in both systems. If the number of 
control points at hand is more than necessary, a least squares 
(LS) solution is done (the number of control points should 
be great than two). If the transformation parameters between 
the two coordinate systems are known, it is easy to do the 
transformation between the two systems.

Due to the complexity of the subject, readers generally stay 
away from the subject of quaternion. We hope that after read-
ing this article, the reader will stay closer to the topic of dual 
quaternions (Kenwright 2012). Since quaternions are based 
on complex numbers, (complex numbers are the largest set of 
numbers), we hope that quaternions will be used much more 
in many different fields in the future. This article will show 
a simple algorithm how to do 3D transformation with eight 
quaternions. Ioannidou and Pantazis (2020). In this way, the 
unknown parameters are nine: four for each quaternion that 
represents the rotation and translation and one for scale fac-
tor. Contrary to Ioannidou and Pantazis (2020) even if the 
DQA algorithm seems to have nine parameters, the number 
of independent parameters is actually eight. Because the scale 
parameter λ is directly dependent on rotation quaternions.

In terms of creating a base for the subject, first the classi-
cal Helmert 3D transformation will be discussed; then, we 
will move on to the DQA method.

In this paper, first is Helmert 7-parameter transformation 
based on Euler rotation angles and second is the advantages 
of quaternion and disadvantages of using Euler angles in 
transformation; thirdly, the quaternions are introduced in 
brief; fourthly, the mathematic model of eight parameters 
DQA model is established, and then, a new DQA algorithm 
of 3D Helmert similarity transformation is presented.

Three‑dimensional Helmert similarity 
transformation

The states of two three-dimensional orthogonal coordinate 
systems (source or  1st and target or  2nd system) with respect 
to each other can be explained with seven datum parameters 

(Fig. 1). These—the three translation (tx, ty, tz) in the direc-
tion of the coordinate axes—are the parameters of the three 
rotations (ε,ψ,ω) around the coordinate axes and a scale (λ) 
between the coordinate systems (Zeng and Yi 2011; Watson 
2006; Bektaş 2017).

The coordinates of a P point are the vector x in the (x, y, 
z)  1st system, the vector X in the (X, Y, Z)  2nd system and, 
the relationship between them,

It is defined by the relation. Here,
to: (x,y,z) coordinates of that origin point of the orthogo-

nal coordinate system in the (X, Y, Z) system

R is the rotation matrix based on the counter clockwise 
rotation angles ε, ψ, ω around the x, y, z axes. If the rotation 
angles between the two systems are very small (in a differ-
ential sense), the R* rotation matrix can be used instead of 
the R rotation matrix.

The rotation matrix R is equal to the product of the rota-
tion matrix in reverse order, showing the transformation 
effects of the rotation angles ε, ψ, ω around the x, y, z axes.
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Fig. 1  Three-dimensional coordinate transformation
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The transformation parameters (tx, ty, tz, λ, ε, ψ, ω) must 
be known in order to make a transformation between two 
three-dimensional orthogonal coordinate systems. If two 
points whose three coordinates are known in both coordi-
nate systems and the only one coordinate of another point 
are known in both systems, an algebraic solution can be 
made. If at least three control points have all coordinates, 
the unknown parameters are determined according to the 
LS method.

The basic equation of three-dimensional similarity trans-
formation is

Above the expression is not linear with respect to the 
unknown’s transformation parameters; the approximate val-
ues of the unknowns are selected and linearized by opening 
to the Taylor series. In cases where approximate values are 
not chosen properly or cannot be chosen, the adjustment 
process is repeated and iteration is done. If there is no infor-
mation about the approximate values of the transformation 
parameters, the zero value for the translation and rotation 
parameters can be taken as zero (txo, tyo, tzo, ε0, ψ0, ω0 =0) 
for the scale parameter λ0=1 can be taken. The derivative 
matrices required for linearization are as follows:

Assuming that only the coordinates in the 2nd system are 
loaded with error in the transformation model

If this nonlinear equation is opened to Taylor series and 
linearization is done, a linear correction equation system is 
obtained in the following structure.
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Correction equations to be written for a control point are 
shown above. If these correction equations are written for 
all control points, a linearized functional model of the indi-
rect measure compensation in the form of v = A δx − l is 
obtained.

P3nx3n weight matrix of control points coordinates, (n: 
number of control points) in accordance with principle of 
adjustment LS

Normal equations are established

δx  is the vector of unknowns, the transformation 
parameters
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If the initial approximate values of the transformation 
parameters are not suitable enough, these calculated param-
eters will not provide transformation equality Eq. (8). In this 
case, the exact transformation parameters found at the end 
of the first adjustment are approximated and the adjustment 
is renewed, that is, iteration. The iteration process continues 
until the result checks hold. The appropriateness of initial 
approximate values affects the number of iterations.

After the transformation parameters are calculated with 
sufficient accuracy, the corrections to be brought to the con-
trol point coordinates are calculated by placing the v = A δx 
− l functional model established for the transformation. In 
the transformation of new points, these adjustment transfor-
mation parameters are used. If necessary, precision calcula-
tions are made for the transformation process.

Advantages of quaternions and disadvantages 
of using Euler angles in rotation

The representation of a rotation as a quaternion (4 numbers) 
is always more meaningful and more simple than the repre-
sentation of a rotation as an orthogonal matrix (9 numbers) 
consisting of Euler rotation angles.

Furthermore, for a given axis and angle, one can easily 
construct the corresponding quaternion, and conversely, for 
a given quaternion, one can easily read off the axis and the 
angle. Both of these are much harder with rotation matrices 
consisting of Euler angles.

Major disadvantages of using Euler angles in 
transformation;

• since the Euler angles are composed of sinus and cosines 
trigonometric functions, they are always dual-solution,

• the sinus function changes rapidly in small rotation 
angles,

• there is a possibility of gimbal lock problem when using 
Euler angles

Gimbal lock problem may occur when using Euler rota-
tion angles (when the rotation around the Y axis is ±90 
degrees). Two axes overlap and lose their independence, 
which is called “loss of degree of freedom.” Quaternions are 
used to avoid this problem. Quaternions have a 4th value in 
addition to Euler angles. This value is a scalar value, which 
prevents conflicts. For further information on gimbal locks, 
please refer to Velsink (2015) and Uygur et al. (2020).

A quaternion can be represented as “q1 i+ q2 j+ q3 k+ q0”

(13)
tx = tx0 + �x ty = ty0 + �y tz = tz0 + �z
� = �0 + δ� � = �0 + δ� � = �0 + ��
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Thanks to the scalar value next to the 3 vector values, 
each rotation matrix indicates to a single angle in the image 
set, and the conflict problem is solved.

Mathematical model of 3D transformation 
based on dual quaternion

Quaternion was invented by Irish mathematician Hamilton 
in 1843 (Liu 2004), which is generally expressed as follows:

where q1, q2, q3, and q0 are real numbers, i, j, and k are basic 
quaternion units, and they meet following properties (Zeng 
2019) .
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The essence of this work is the introduction of a new 
dual quaternion algorithm. In order not to get away from the 
essence, we will not go into further detail on quaternions. 
There is a wealth of information about quaternions in the 
literature (Jitka 2011; Hamilton 1853; Liu 2004; Wang et al. 
2014; Zeng 2019).

Coordinate transformation with the dual quaternions 
method extends to the 1882s. Clifford (2007) created dual 
quaternions for both rotation and translation on a single 
model.

where r and s are quaternions.

In order to determine a new position of a point, through 
the dual quaternions, the translation and rotation properties 
for the unit dual quaternion were defined as qr = r and s = 
t . r

with r the unit quaternion that represents the rotation and t 
= ( tx, ty, tz, 0) the quaternion that represents the transla-
tion (Zeng 2019; Jitka 2011). Utilizing the dual quaternion 
theory, the R matrix can be determined from the relation:

Finally, we get DQA transformation equality as follows:

The number of unknown parameters appears to be nine 
in the above transformation equation. These are four for 
each quaternion that represents the rotation and translation 
and one for scale factor, whereas in reality, the number of 
unknown parameters is eight because the scale parameter λ 
is directly dependent on rotation quaternions.
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If we put above Eq. (25) into Eq. (24), we get DQA trans-
formation equality with eight parameters as follows:

As above, the LS method is used to calculate both the 
rotation angles and the translation parameters as well as their 
error.

For the i-th point, DQA transformation can be written 
from Eq. (26)

The transformation equation (Eq. (26)) is not linear. 
Approximate values of the unknowns are required to lin-
earize the transformation equation. When choosing the first 
approximate values of the unknowns, only r0,0 =1 and others 
can be taken as zero.

The transformation model in Eq. (26) is then linearized 
with respect to these quaternion elements (r0, r1, r2, r3, s0, 
s1, s2, s3) as follows:

We assume that only the coordinates of the 2nd system 
are loaded with error for the LS adjustment

where (.)0 denotes the approximate value;
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If at least three control points have all coordinates, the 
unknown parameters are determined according to the least 
squares (LS) method.

Equation (27) correction equations to be written for each 
control point are shown above.

A linearized functional model of the indirect measure 
compensation in the form of v = A δx − l is obtained.

P weight matrix of control points coordinates in accord-
ance with principle of LS adjustment

(26)

⎡

⎢

⎢

⎢

⎣

X

Y

Z

0

⎤

⎥

⎥

⎥

⎦

Pi

= 2.WT
(r)
.s +

�

r2
0
+ r2

1
+ r2

2
+ r2

3

�

WT
(r)
.Q(r)

⎡

⎢

⎢

⎢

⎣

X

Y

Z

0

⎤

⎥

⎥

⎥

⎦

Pi

r1,0 = r2,0 = r3,0 = s0,0 = s1,0 = s2,0 = s3,0 = 0

(27)v = A0 �x − l0

(28)vTPv = min .
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Normal equations are established

� x =
(

ATPA
)−1

AT Pl ∶ �x  is the vector of unknowns, the 
transformation parameters

The exact quaternions are found by adding the calculated 
differential quaternions to their approximate values.

and scale parameter

If the initial approximate values of the transformation 
parameters are not suitable enough, these calculated param-
eters will not provide transformation equality. In this case, 
the exact transformation parameters found at the end of the 
first adjustment are approximated and the adjustment is 
renewed, that is, iteration. The iteration process continues 
until the result checks hold. The appropriateness of initial 
approximate values affects the number of iterations.

After the transformation parameters are calculated with 
sufficient accuracy, the corrections to be brought to the con-
trol point coordinates are calculated by placing the v = A δx 
− l functional model established for the transformation. In 
the transformation of new points, these adjustment transfor-
mation parameters are used. If necessary, precision calcula-
tions are made for the transformation process.

According to the presented algorithm, the quaternions 
and scale values found as a result of calculation are nor-
malized values. Their actual values ( r , s , � ) are determined 
below.

After construct W(r ) and Q(r ) matrix by Eq. (23), finally, 
we get dual quaternion transformation equality with eight 
parameters as follows:

(29)ATPA�x − ATPl = 0

(30)
δx =

(

ATA
)−1

ATl or δx = A�l ∶ if (P = I)

δx =
[

δr0 δr1 δr2 δr3 δs0 δs1 δs2 δs3
]T

(31)
r0 = r0,0 + δr0 r1 = r1,0 + δr1 r2 = r2,0 + δr2 r3 = r3,0 + δr3

(32)
s0 = s0,0 + δs0 s1 = s1,0 + δs1 s2 = s2,0 + δs2 s3 = s3,0 + δr3

(33)� = r2
0
+ r2

1
+ r2

2
+ r2

3

(34)ri = ri∕
√

λ, si = si

√

λ (i = 0, 1, 2, 3)

(35)� = �2

(36)

⎡

⎢

⎢

⎢

⎣

x

y

z

0

⎤

⎥

⎥

⎥

⎦

Pi

= 2.WT

(r)
.s + �WT

(r)
.Q(r)

⎡

⎢

⎢

⎢

⎣

x

y

z

0

⎤

⎥

⎥

⎥

⎦

Pi

Compute corrections v = A δx − l
Root mean square error

The f lowchar t of proposed DQA method is 

below 

Therefore, the algorithm of proposed DQA method is 
presented in Table 1.

DQA_3d_transformation MATLAB function

The function DQA_3d_transformation performs both 
reverse and direct problem solving based on dual quater-
nions between two Cartesian coordinate systems. The 3D 

(37)rms =

√

vTPv

3n − 7
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similarity transformation parameters are eight quaternions. 
The quaternions are estimated from control points coordi-
nates with least-squares sense. Three translations, three rota-
tion angles, and one scale factor are computed from these 
quaternions. The function works for any translation, rotation 
angle, and scale factor and does not need approximate val-
ues. The use of this function is in the form of [q,L,T,angles
,res,rms,xyz3]=DQA_3d_transformation(xyz1,xyz2)where 
xyz1 denotes the [x y z] matrix of coordinates in the source 
system; xyz2 denotes the [X Y Z] matrix of coordinates in 
the target system; if there is also a new point to be converted, 
these points are added to the xyz1 matrix. The output of 
the function is explained in the help of this function. The 
function DQA_3d_transformation can be downloaded freely 
from MATLAB file-exchange. The link below can be used to 
download the function. https:// www. mathw orks. com/ matla 
bcent ral/ filee xchan ge/ 90711- dual- quate rnions- 3d- trans 
forma tion?s_ tid= srcht itle

Numerical example

The data are chosen (Grafarend and Awange (2003)) as 
seven control points in this case; the 3D coordinates of con-
trol point in  1st and  2nd systems are listed in Table 2.

The weight of control points is equal (P=I). In order 
to make comparisons between different transformation 

methods, the transformation problem in question is solved 
separately with classical Helmert 3D transformation, quater-
nion-based transformation, and dual quaternion-based trans-
formation (3 different ways). The same results were obtained 
in all methods. It was observed that there was no signifi-
cant difference between the different method solutions. The 
results are listed in Table 3. Residual (correction) matrix of 
control points is listed in Table 4.

The same residual values were obtained in the 5 differ-
ent calculations above. When Table 3 is examined, it was 
observed that the results were compatible and there was no 
significant difference between them. It is observed that there 
are only minor differences between Jitka (2011) and others. 
It is thought that these small differences may be due to the 
algorithm used.

Conclusion

Expecting accuracy in coordinate transformation operations 
depends on other factors besides choosing a good trans-
formation model. As the number of parameters increases 
in transformation models, the transformation accuracy is 
higher. In all coordinate transformations, if the coordinates 
consist of large numbers, there is a loss of precision even if 
the calculations are performed with double precision. It is 
recommended to use the point coordinates of both systems 

Table 1  A dual quaternion algorithm

Initiation: input 3D coordinates of control points (XYZ), (xyz) and initial value
r0,0 = 1 and r1,0 = r2,0 = r3,0 = s0,0 = s1,0 = s2,0 = s3,0 = 0
Step 1 Construct v = A δx – l by Eq. (27)
Step 2 Compute δx = [δr0 δr1 δr2 δr3 δs0 δs1 δs2 δs3]T unknown parameters by Eq. (30) and compute new approximate value by Eqs. (31–32)
Step 3 Compute � = r

2

0
+ r

2

1
+ r

2

2
+ r

2

3
 scale parameter

Step 4 Compute norm (δxi) (subscript i denotes the iterative number).
If (abs(norm(δxi) − norm(δxi–1)) > predefined threshold (e.g.,  10−10), turn to Step 1, otherwise turn to Step 5

Step 5 Compute real quaternions ( r, s) and scale ( �) by Eqs. (34–35). If there are new points to be converted, the transformation model is estab-
lished by Eq. (36) and lastly transformation is done.

Step 6 Compute R by Eq.(18) furthermore, if rotation angles ε, ψ, ω are needed by Eq. (20), compute v residuals by Eq. (27). Lastly compute 
rms by Eq. (37).

Table 2  Coordinate of control points (XYZ)1 and (XYZ)2 system

Station name X1 Y1 Z1 X2 Y2 Z2

Solitude 4157222.5430 664789.3070 4774952.0990 4157870.2370 664818.6780 4775416.5240
Buoch Zeil 4149043.3360 688836.4430 4778632.1880 4149691.0490 688865.7850 4779096.5880
Hohenneuffen 4172803.5110 690340.0780 4758129.7010 4173451.3540 690369.3750 4758594.0750
Kuehlenberg 4177148.3760 642997.6350 4760764.8000 4177796.0640 643026.7000 4761228.8990
Ex Mergelacc 4137012.1900 671808.0290 4791128.2150 4137659.5490 671837.3370 4791592.5310
Ex Hof Asperg 4146292.7290 666952.8870 4783859.8560 4146940.2280 666982.1510 4784324.0990
Ex Kaisersbach 4138759.9020 702670.7380 4785552.1960 4139407.5060 702700.2270 4786016.6450

https://www.mathworks.com/matlabcentral/fileexchange/90711-dual-quaternions-3d-transformation?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/90711-dual-quaternions-3d-transformation?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/90711-dual-quaternions-3d-transformation?s_tid=srchtitle
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by shifting them to the center of gravity separately. Thus, 
loss of sensitivity will be relatively prevented since working 
with small coordinates. The precision of the transformation 
process depends on the distribution and the distance from 
the center of gravity of the new point to be transformed. Bet-
ter results can be obtained in cases where common points 
are homogeneously distributed and surround the new points 
to be transformed. When moving away from control points, 
sensitivity decreases in coordinate transformation processes 
(Bektaş 2017).

On the other hand, no study showing the superiority of 
the DQA method over classical 3D methods in terms of 
accuracy has been noted. This is to be expected, because 
although they have different transformation methods, the 
aim is to find the existing 7 parameters between two coordi-
nate systems according to LS solution. The presented itera-
tive DQA algorithm is faster convergence than Helmert 

method. DQA does not need approximate values of quater-
nions for solution. The disadvantages of the Helmert method 
based on Euler angles were mentioned. The DQA method 
removes these disadvantages. Finding translation and rota-
tion parameters as one meaning at once is the superiority of 
DQA method over other transformation methods. Further-
more, it is considered that the proposed DQA method can 
be applied to other models such as 9-parameter affine and 
general 12-parameter affine transformations.

Acknowledgements I thank the Editor and three anonymous reviewers 
for their remarks and constructive comments which clearly helped to 
improve this article

Declarations 

Conflict of interest The authors declare no competing interests.

References

Amiri-Simkooei AR (2018) Parameter estimation in 3D affine and sim-
ilarity: implementation of variance component estimation. J Geod 
92(11):1285–1297. https:// doi. org/ 10. 1007/ s00190- 018- 1119-1

Andrei O. (2006) 3D affine coordinate transformations. M.Sc. Thesis in 
Geodesy, No. 3091 TRITA-GIT EX 06-004. Stockholm, Sweden: 
School of Architecture and the Built Environment, Royal Institute 
of Technology (KTH).

Azeem MA, Mekkawi M, Gobashy M (2014) Subsurface structures 
using a new integrated geophysical analysis, South Aswan, 
Egypt. Arab J Geosci 7:5141–5157. https:// doi. org/ 10. 1007/ 
s12517- 013- 1140-x

Table 3  Computed 
transformation parameters 
(identical weight) with different 
methods

Helmert 3D 
transforma-
tion

Quaternion transformation Dual quaternion transformation

(Uygur et al. 2020) (Jitka 2011) (Zeng 2019) Proposed method

tx[m] 641.8804 641.8804 641.8908 641.8804 641.8804
ty[m] 68.6553 68.6553 68.6570 68.6553 68.6553
tz[m] 416.3982 416.3981 416.4101 416.3981 416.3981
λ 1.000005582 1.000005582 1.000005582 1.000005582 1.000005582
ε [o] −0.00027736 −.00027736 −0.00027736 −0.00027736 −.00027736
ψ [o] 0.00024825 0.000248247 0.000248250 0.000248248 0.000248247
ω [o] 0.00027585 0.0002758589 0.000275858 0.000275859 0.0002758589
ro 0.99999999999 −.99999999 1.000000000 0.9999999999
rı −0.000002407 0.000002420 0.000002420 0.000002420
r2 −0.000002166 0.000002166 −0.000002166 −0.000002166
r3 0.0000024204 −0.00000240 −0.000002407 −0.000002407
so 320.9406 320.9406
sı 34.3289 34.3289
s2 208.1983 208.1983
s3 −0.00020124 −0.00020124
rms [m] 0.0772 0.0772 0.0772 0.0772 0.0772

Table 4  Residual matrix of control points

Residual matrix

Station name Vx [m] Vy [m] Vz[m]

Solitude 0.0940 0.1351 0.1402
Buoch Zeil 0.0588 −0.0497 0.0137
Hohenneuffen −0.0399 −0.0879 −0.0081
Kuehlenberg 0.0202 −0.0220 −0.0874
Ex Mergelacc −0.0919 0.0139 −0.0055
Ex Hof Asperg −0.0118 0.0065 −0.0546
Ex Kaisersbach −0.0294 0.0041 0.0017

https://doi.org/10.1007/s00190-018-1119-1
https://doi.org/10.1007/s12517-013-1140-x
https://doi.org/10.1007/s12517-013-1140-x


Arab J Geosci         (2022) 15:1273  

1 3

Page 9 of 9  1273 

Bektaş S (2017) Dengeleme Hesabı (Adjustment Calculus). Ondokuz 
Mayis University Press, ISBN:975-7636-54-1, Samsun

Clifford WK (2007) Mathematical Papers. AMS Chelsea Publishing; 
American Mathematical Society, Providence

Deakin RE (2006) A note on the Bursa-Wolf and Molodensky-Badekas 
transformations. In: Technical Report, School of Mathematical 
and Geospatial Sciences. RMIT University, Melbourne, pp 1–21

Dong L, Tong X, Qingchun H, Tao Q (2021a) Empty region identifica-
tion method and experimental verification for the two-dimensional 
complex structure. Int J Rock Mech Min Sci 147(3):104885. 
https:// doi. org/ 10. 1016/j. ijrmms. 2021. 104885

Dong L, Tong X, Ma J (2021b) Quantitative investigation of tomo-
graphic effects in abnormal regions of complex structures. Engi-
neering 7(7):1011–1022. https:// doi. org/ 10. 1016/j. eng. 2020. 06. 
021

Even-Tzur G (2018) Invariance property of coordinate transformation. 
J Spat Sci 63(1):23–34. https:// doi. org/ 10. 1080/ 14498 596. 2017. 
13166 88

Even-Tzur G (2020) Coordinate transformation with variable number 
of parameters. Surv Rev 52(370):62–68. https:// doi. org/ 10. 1080/ 
00396 265. 2018. 15174 77

Grafarend E, Awange J (2003) Nonlinear analysis of the three-dimen-
sional datum transformation [conformal group C7(3)]. J Geod 
77(1–2):66–76. https:// doi. org/ 10. 1007/ s00190- 002- 0299-9

Hamilton WR (1853) Lectures on quaternions: containing a systematic 
statement of a new mathematical method. University Press, Berlin

Ioannidou S, Pantazis G (2020) Helmert transformation problem. From 
Euler Angles Method to Quaternion Algebra. ISPRS Int J Geo-
Inf 9:494

Jitka P (2011) Application of dual quaternions algorithm for geodetic 
datum transformation. Aplimat J Appl Math 4(2):225–236

Kenwright B (2012) A beginners guide to dual-quaternions: what they 
are, how they work, and how to use them for 3D character hierar-
chies, The 20th International Conference on Computer Graphics, 
Visualization and Computer Vision (2012), pp 1-13

Liu JF (2004) Three dimensional rotation represented by quaternion. 
College Phys 23(4):39–43 (in Chinese)

Uygur SÖ, Aydin C, Akyilmaz O (2020) Retrieval of Euler rotation 
angles from 3D similarity transformation based on quaternions. J 
Spat Sci. https:// doi. org/ 10. 1080/ 14498 596. 2020. 17761 70

Velsink H (2015) Extendable linearised adjustment model for deforma-
tion analysis. Surv Rev 47(345):397–410. https:// doi. org/ 10. 1179/ 
17522 70614Y. 00000 00140

Wang YB, Wang YJ, Wu K, Yang HC, Zhang H (2014) A dual quater-
nion-based, closed-form pairwise registration algorithm for point 
clouds. ISPRS J Photogramm Remote Sens 94:63–69

Wang Q, Chang G, Xu T, Zou Y (2018) Representation of the rota-
tion parameter estimation errors in the Helmert transformation 
model. Surv Rev 50(358):69–81. https:// doi. org/ 10. 1080/ 00396 
265. 2016. 12348 06

Watson G (2006) Computing Helmert transformations. J Comput Appl 
Math 197:387–394

Závoti J, Kalmár J (2016) A comparison of different solutions of the 
Bursa–Wolf model and of the 3D, 7-parameter datum transforma-
tion. Acta Geod Geophys 51:245–256

Zeng H (2015) Analytical algorithm of weighted 3D datum transfor-
mation using the constraint of orthonormal matrix. Earth Planets 
Space 67(1):105. https:// doi. org/ 10. 1186/ s40623- 015- 0263-6

Zeng H (2019) Iterative solution of Helmert transformation based on a 
unit dual quaternion. Acta Geodaetica et Geophysica 54(1):123–
141. https:// doi. org/ 10. 1007/ s40328- 018- 0241-0

Zeng H, Yi Q (2011) Quaternion-based iterative solution of three-
dimensional coordinate transformation problem. J Comput 
6:1361–1368 [CrossRef]

Zeng H, Fang X, Chang G, Yang R (2018) A dual quaternion algo-
rithm of the Helmert transformation problem. Earth Planets Space 
70:26. https:// doi. org/ 10. 1186/ s40623- 018- 0792-x

https://doi.org/10.1016/j.ijrmms.2021.104885
https://doi.org/10.1016/j.eng.2020.06.021
https://doi.org/10.1016/j.eng.2020.06.021
https://doi.org/10.1080/14498596.2017.1316688
https://doi.org/10.1080/14498596.2017.1316688
https://doi.org/10.1080/00396265.2018.1517477
https://doi.org/10.1080/00396265.2018.1517477
https://doi.org/10.1007/s00190-002-0299-9
https://doi.org/10.1080/14498596.2020.1776170
https://doi.org/10.1179/1752270614Y.0000000140
https://doi.org/10.1179/1752270614Y.0000000140
https://doi.org/10.1080/00396265.2016.1234806
https://doi.org/10.1080/00396265.2016.1234806
https://doi.org/10.1186/s40623-015-0263-6
https://doi.org/10.1007/s40328-018-0241-0
https://doi.org/10.1186/s40623-018-0792-x

	A new algorithm for 3D similarity transformation with dual quaternion
	Abstract
	Introduction
	Three-dimensional Helmert similarity transformation
	Advantages of quaternions and disadvantages of using Euler angles in rotation

	Mathematical model of 3D transformation based on dual quaternion
	DQA_3d_transformation MATLAB function

	Numerical example
	Conclusion
	Acknowledgements 
	References


