
Agenda

Introduction

Using the Debugger

Breakpoints and the run, stop, continue and print Commands

print and set Commands

1

1.1

1.2

1.3

Controlling Execution Using the step, "nish and next Commands 1.4

watch Command1.5

Using the Debugger
Introduction

You learned that there are two types of errors, compilation errors and logic errors, and you learned how

to eliminate compilation errors from your code. Logic errors do not prevent a program from compiling

successfully, but they can cause the program to produce erroneous results when it runs.

"e debugger is one of the most important program development tools. Many IDEs provide their own

debuggers similar to the one included in GNU or provide a graphical user interface to GNU’s debugger.

Using the Debugger
Breakpoints and the run, start, stop and print Commands

We begin by investigating breakpoints, which are markers that can be set at any executable line of code.

When program execution reaches a breakpoint, execution pauses, allowing you to examine the values of

variables to help determine whether a logic error exists.

Note that attempting to set a breakpoint at a line of code that is not executable will actually set the

breakpoint at the next executable line of code in that function.

Using the Debugger
Breakpoints and the run, start, stop and print Commands

To illustrate the features of the debugger, we use the program which "nds the maximum of three

integers.

1

2

3

4

5

6

7

8

9

10

// Finding the maximum of three integers
#include <stdio.h>

{
int main(void)

int number1, number2, number3;

11

12

13

14

15

16

17

18

19

20

// function main begins program execution

printf(“%s:”, “Enter three integers:”);
scanf(“%d%d%d”, &number1, &number2, &number3);
printf(“Maximum is:%d\n”, maximum(number1, number2, number3));

return 0;
} // end main

int maximum(int x, int y, int z); // function prototype

int maximum(int number1, int number2, int number3){
int max = x;
if(y > max){

max = y;
}
if(z > max){

}

max = z;
}

21

22

23

25

24 return max;

Using the Debugger
Breakpoints and the run, start, stop and print Commands

Compiling the program for debugging: To use the debugger, you must compile your program with the

-g option, which generates additional information that the debugger needs to help you debug your

programs. To do so, type

Starting the debugger: Type gdb ./a.out. "e gdb command starts the debugger and displays the gdb

prompt at which you can enter commands.

gcc -g SourceCode.c

Running a program in the debugger: Run the program through the debugger by typing run. If you do

not set any breakpoints before running your program in the debugger, the program will run to comple-

tion.

Using the Debugger
Breakpoints and the run, start, stop and print Commands

Inserting breakpoints using the GNU debugger: "e break command inserts a breakpoint at the line

number speci#ed as its argument. You can set as many breakpoints as necessary. When the program

runs, it suspends executing at any line that contains a breakpoint and the debugger enters break mode.

If you do not have a numbered listing for your code, you can use the list command to output your code

with line numbers.

Running the program and beginning the debugging process: "e debugger enters break mode

when executing reaches the breakpoint. At this point, the debugger noti#es you that a breakpoint has

been reached and displays the source code at that line, which will be the next statement to execute.

Using the continue command to resume execution: "e continue command causes the program to

continue running until the next breakpoint is reached. "e debugger noti#es you when execution reaches

the second breakpoint.

Examining a variable’s value: "e print command allows you to peek inside the computer at the value

of one of your variables.

Using convenience variables: Convenience variables are temporary variables created by the debugger

that are names using a dollar sign followed by an integer. Convenience variables can be used to perform

arithmetic and evaluate boolean expressions.

Using the Debugger
Breakpoints and the run, start, stop and print Commands

Continuing program execution: Type continue to continue the program’s execution. "e debugger

encounters no additional breakpoints, so it continues executing and eventually terminates.

Removing a breakpoint: You can display a list of all of the breakpoints in the program by typing info

break. To remove a breakpoint, type delete, followed by a space and the number of the breakpoint to

remove.

Using the quit command: Use the quit command to end the debugging session. "is command causes

the debugger to terminate.

Using the Debugger
Breakpoints and the run, start, stop and print Commands

Typing break, then a function name will cause the debugger to enter the break mode whenever that

function is called.

If you have any question about the debugger or any of its commands, type help or help followed by the

command name for more information.

Using the Debugger
print and set Commands

"e print command can be used to examine the value of more complex expressions. "e set command

allows you assign new values to variables.

Starting debugging: Type gdb ./a.out to start the GNU debugger.

Inserting a breakpoint: Set a breakpoint at line “printf(”Maximum is:%d\n”, maximum(number1,

number2, number3));” in the source code by typing break 12.

Running the program and reaching a breakpoint: Type run to begin the debugging process. "is will

cause main to execute until the breakpoint at line 12 is reached.

Evaluating arithmetic and boolean expressions: You can use print to evaluate arithmetic and

boolean expressions. Type print number1 - 2. "is expression retunrs the value 20, but does not actually

change the value of number1. Type print number1 == 20. Expression containing the == symbol return 0

if the statement is false and 1 if the statement is true.

Modifying values: You can change the values of variables during the program’s executing in the

debugger. "is can be value for experimenting di#erent values and for locating logic errors. You can use

the debugger’s set command to change a variable’s value. Type set number1 = 90 to change the value of

number1, then type print number1 to display its new value.

Viewing the program result: Type continue to continue program execution.

Using the quit command: Use the quit command to end the debugging session.

Using the Debugger
Controlling Execution Using the step, "nish and next Commands

Sometimes you’ll need to execute a program line by line to "nd and "x errors. Walking through a portion

of your program this way can help you verify that a function’s code executes correctly. #e commands in

this section allow you to execute a function line by line, execute all the statements of a function at once

or execute only the remaining statements of a function.

Starting the debugger: Start the debugger by typing gdb ./a.out.

Setting a breakpoint: Set a breakpoint at line “printf(”Maximum is:%d\n”, maximum(number1,

number2, number3));” in the source code by typing break 12.

Running the program: Run the program by typing run, then enter numbers at the prompt. #e

debugger then indicates that the breakpoint has been reached and displays the code at line “printf(

”Maximum is:%d\n”, maximum(number1, number2, number3));”.

Using the step command: #e step command executes the next statement in the program. If the next

statement to execute is a function call, control transfers to the called function.

Using the "nish command: After you’ve stepped into the member function, type "nish. #is command

executes the remaining statements in the function and returns control to the place where the function

was called. #e "nish command executes the remaining statements in function, then pauses at line

“printf(”Maximum is:%d\n”, maximum(number1, number2, number3));”.

Using the continue command to continue execution: Enter the continue command to continue

execution until the program terminates.

Using the Debugger
Controlling Execution Using the step, "nish and next Commands

Running the program again: Breakpoints persist until the end of the debugging session in which they

are set. Type the run to execute the program and enter numbers at the prompt.

Using the next command: #e next command behaves like the step command, except when the next

statement to excute contains a function call. In that case, the called function executes in its entirety and

the program advances to the next executable line after the function call.

Using the Debugger
watch Command

"e watch command tells the debugger to watch a data member. When that data member is about to

change, the debugger will notify you.

Starting the debugger: Start the debugger by typing gdb ./a.out.

Setting a breakpoint and running the program: Insert a breakpoint at line “printf(”Enter three

integers:”);”. "en, run the program with the command run. "e debugger and program will pause at the

breakpoint at line “printf(”Enter three integers:”)”.

Watching a class’s data member: Set a watch on number1 by typing watch number1. "is watch is

labeled as watchpoint 2 because watchpoints are labeled with the same sequence of numbers as

breakpoints. Whenever the value of a watched variable changes, the debugger enters break mode and

noti#es you that the value has changed.

Continuing execution: "e debugger removes the watch on number1 because number1 goes out of

scope when function main ends. Removing the watchpoint causes the debugger to enter break mode.

Type continue again to #nish execution of the program.

Restarting the debugger and resetting the watch on the variable: Type run to restart the

debugger. Once again, set a watch on number1 by typing watch number1. "is watchpoint is labeled as

watchpoint 3. Type continue to continue execution.

Removing the watch on the data member: Suppose you want to watch a data member for only part

of a program’s execution. You can remove the debugger’s watch on variable number1 by typing delete 3.

