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Abstract Structure-based virtual screening plays an

important role in drug discovery and complements other

screening approaches. In general, protein crystal structures

are prepared prior to docking in order to add hydrogen

atoms, optimize hydrogen bonds, remove atomic clashes,

and perform other operations that are not part of the x-ray

crystal structure refinement process. In addition, ligands

must be prepared to create 3-dimensional geometries,

assign proper bond orders, and generate accessible tauto-

mer and ionization states prior to virtual screening. While

the prerequisite for proper system preparation is generally

accepted in the field, an extensive study of the preparation

steps and their effect on virtual screening enrichments has

not been performed. In this work, we systematically

explore each of the steps involved in preparing a system for

virtual screening. We first explore a large number of

parameters using the Glide validation set of 36 crystal

structures and 1,000 decoys. We then apply a subset of

protocols to the DUD database. We show that database

enrichment is improved with proper preparation and that

neglecting certain steps of the preparation process produces

a systematic degradation in enrichments, which can be

large for some targets. We provide examples illustrating

the structural changes introduced by the preparation that

impact database enrichment. While the work presented

here was performed with the Protein Preparation Wizard

and Glide, the insights and guidance are expected to be

generalizable to structure-based virtual screening with

other docking methods.
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Introduction

Structure-based virtual screening plays an important role in

the drug discovery process and there are many examples of

successes from both academia and industry [1–7]. In

addition, there have been a number of publications com-

paring the performance of different programs in a pursuit to

find the best docking methods. Some studies have looked at

the ability to accurately position ligands [8–10] while

others have been focused on retrieving active compounds

from virtual database screens [11–17] or inverse screening

for targets [18–21]. In most cases, these studies used a

single protocol for the preparation of the proteins, ligands,

and waters, although some of the papers have explored

individual aspects of the preparation process [22–25]. The

advantage of using a single preparation protocol for

docking assessment studies is that it simplifies the analysis

by removing many of the variables associated with virtual

screening. However, there are several disadvantages, such

as the fact that docking to the wrong state of a protein or

not including the correct ligand tautomers does provide

useful information about the quality of the docking pro-

grams; in fact, better programs could be disproportionately

more negatively affected when inaccuracies in the input
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structures exist. In addition, docking with a single prepa-

ration protocol does not provide insights into best practices

for virtual screening.

Many of the early docking studies focused on accurately

reproducing the crystallographic poses of ligands (‘‘native

docking’’) [26–30]. This presents a best-case scenario in

which the protein is ideally formed to accommodate the

ligand of interest. As docking accuracy improved over

time, there was a transition to focus more on virtual

screening enrichment [31–33] and binding energy estima-

tion [34–37], both of which are still primarily done in the

context of a single rigid receptor structure. However, in

recent years there has been significant progress in the

treatment of receptor flexibility in docking [38–44]. Still,

accurate cross docking is a challenge for the field, espe-

cially when induced-fit effects involve more than a few

side-chain movements and/or subtle backbone relaxation.

Furthermore, treating receptor flexibility during docking

adds significant computational costs due to the increased

degrees of freedom, thereby making it generally inacces-

sible for large-scale virtual screening campaigns.

In virtual screening, the primary objective is to score

large libraries of compounds (often in the millions) and

preferentially rank active compounds ahead of inactive

compounds. The degree to which active compounds can be

scored better than inactive compounds is referred to as

‘‘enrichment’’. The objective of virtual screening is typi-

cally to retrieve the maximum number of active and

diverse ligands as early as possible in the rank-ordered set

of results. Due to the large computational resources

required for fully sampling protein and ligand atoms

simultaneously, the standard approach in structure-based

virtual screening is to treat the receptor rigidly, which has

proven to be successful in many cases, as noted by the

references provided in the preceding paragraphs. However,

there is evidence that including some amount of receptor

flexibility in virtual screening, either through explicit

sampling or docking to an ensemble of receptor confor-

mations, can improve results [45–51].

In this work, we focus on the preparation steps involved

in docking to a single receptor structure with the aim of

determining the influence of each step and the best overall

protocol for virtual screening. The preparation process can

be as simple as adding hydrogens, bond orders, and formal

charges to the starting protein and ligand molecules.

However, more involved preparation protocols include

sampling degrees of freedom that are ambiguous in crystal

structures of standard resolution, such as 180� flips of the

terminal rotatable side-chain groups of shape-symmetric

residues (Asn, Gln, and His), tautomer/ionization state

assignment for both the ligand and the protein, and the

treatment of residues with missing density. In addition, the

placement of rotatable hydrogen atoms on Cys, Ser, Thr,

and Tyr side chains can be optimized. The preparation

process can also include relaxation of the receptor structure

and options for the treatment of crystallographic water

molecules. First, we describe the various parameters that

will be explored and perform an extensive survey of the

Table 1 List of targets, PDB codes, and the number of active ligands for the exploratory set

Target PDB code # Actives Target PDB code # Actives

Acetylcholinesterase 1e66 28 Human estrogen receptor 1err 10

Acetylcholinesterase 1eve 28 Human estrogen receptor 3ert 10

Aldose reductase 1ah3 36 Lymphocyte-specific tyrosine kinase (Lck) 1qpe 20

Aldose reductase 1ef3 36 Matrix metalloproteinase-2 1hov 20

Aldose reductase 2acq 36 Matrix metalloproteinase-3 1g49 20

Cyclin dependent kinase 2 1aq1 20 Neuraminidase 1a4q 20

Cyclin dependent kinase 2 1dm2 20 Neuraminidase 1bji 20

Cyclooxygenase-2 1cvu 33 Neuraminidase 1mwe 20

Cyclooxygenase-2 1cx2 33 p38 MAP kinaseb 1a9u 29

E. coli thymidylate synthase 1ddu 20 p38 MAP kinaseb 1bl7 29

E. coli thymidylate synthase 1syn 20 p38 MAP kinasec 1kv2 20

EGFR tyrosine kinase 1ml7 20 Squalene synthase 1ezf 20

Factor Xa 1fjs 20 Thermolysin 1tmn 10

HIV-1 protease 1hpx 15 Thrombin 1dwc 16

HIV-1 protease 1hsh 15 Thrombin 1ett 16

HIV-1 reverse transcriptase 1ep4 33 Thrombin 1mu6 16

HIV-1 reverse transcriptasea 1rt1 33 Thymidine kinase 1kim 7

HIV-1 reverse transcriptase 1vrt 33 Thymidylate synthase 2bbq 20

a Allosteric binding site
b ATP binding site (DFG-in)
c Allosteric binding site (DFG-out)
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parameters on the Glide validation set, which includes 36

crystal structures covering 20 unique targets and the 1,000-

compound Glide decoy set. We then present virtual

screening enrichments on the DUD database for a subset of

four protocols that range from a minimally prepared system

to a fully prepared system. Finally, we show examples

where particular steps in the preparation process are crucial

in order to obtain good virtual screening results.

Methods

Ligand datasets

Two independent sets of ligands were used for this study.

First, in order to exhaustively study all combinations of the

preparation settings explored in this work, we used the

Glide docking validation set with 36 crystal structures

spanning 20 targets and 7–36 active compounds per target

(referred to as ‘‘exploratory set’’) [52]. Multiple crystal

structures were used for some targets to assess the

enrichment variability. The Glide docking decoy set of

1,000 compounds was used, which is comprised of mole-

cules with properties that resemble those of the active

compounds [53]. We used the ‘‘400 mw’’ decoys set

(average molecular weight of 400 Daltons) for all targets

except thymidine kinase (PDB code 1kim), for which the

‘‘360 mw’’ decoy set was used because of the smaller

active compounds. The list of targets, PDB codes, and

number of active ligands for the exploratory set is provided

in Table 1.

A second set of ligands for this study (referred to as

‘‘DUD test set’’) was obtained from the Directory of Useful

Decoys based on work by Huang et al. [54]. This set

includes 40 targets with ligands that have been carefully

selected to ensure diversity within the active compounds

and a per-target curated set of decoy molecules that have

similar properties to the active compounds for that target.

The DUD set was used to assess a subset of the settings

examined with the exploratory set.

Ligand preparation

Three-dimensional (3D) coordinates were generated for all

ligands with LigPrep [55]. Ionization/tautomeric states

were generated with either a pair of fast rule-based pro-

grams (called the ionizer and tautomerizer) or with Epik

[56, 57], which is based on the more accurate Hammett and

Taft methodologies. In addition to calculating reasonable

ligand states, Epik also estimates a penalty to quantify the

energetic cost it takes to generate each state in solution.

The Epik state penalty is computed in units of kcal/mol,

thereby making it directly compatible with the GlideScore

used for docking and allowing us to explore the impact of

adding the Epik state penalty to the GlideScore. The sum of

the GlideScore and the Epik state penalty is referred to as

the DockingScore in Glide. The DockingScore is used for

the final ranking and enrichment calculations. Epik also has

a mode to treat metal binding states, which involves

increasing the pH range for the state generation step and

then reducing the penalty in the docking stage for states

Table 2 Ligand and protein preparation settings explored in this study

Stage of preparation Value Description

Ligand states (ionizer/

tautomerizer or Epik)

None Ligand states generated from LigPrep with default ionizer and tautomerizer

Epik pH = 7 ± 2 Epik state penalties based on Hammett and Taft equations

Epik with metal

binding states

Epik state penalties with pH range expanded to 7 ± 4 and elimination of state penalty

during docking if penalized atom is interacting directly with a metal

H-bond optimization

(ProtAssign)

None Retain Asn, Gln, and His rotamers from the PDB structure. Treat all His in neutral form

with protonation on Ne. Asp and Glu in negative ionized form. Add hydroxyl and thiol

hydrogens in default trans position

Standard Complete sampling of all states for H-bond clusters with up to 100 combinations. Monte

Carlo sampling for clusters with more than 100 possible states

Exhaustive Complete sampling of all states for H-bond clusters with up to 10,000 combinations. Monte

Carlo sampling for clusters with more than 10,000 possible states

Protein minimization

(Impref)

H-only Two-step relaxation of only hydrogen atoms with all other atoms fixed. In the first step, all

torsional potentials to hydrogen atoms are removed

Heavy atom

RMSD = 0.15

H-only optimization followed by all-atom minimization with termination based on

convergence or reaching a heavy atom RMSD of 0.15 Å

Heavy atom

RMSD = 0.30

Same as above with RMSD of 0.30 Å

Heavy atom

RMSD = 0.50

Same as above with RMSD of 0.50 Å
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where a negative charge is satisfied when binding to a

metal ion.

Protein datasets

The proteins for this study were obtained from Protein Data

Bank [58, 59]. The exploratory set from our Glide vali-

dation work contains 36 structures and the full list is shown

in Table 1. The DUD test set is based on the work of

Huang et al. [54] and contains 40 targets (see target list on

the DUD website: http://dud.docking.org/r2).

Protein preparation

The Protein Preparation Wizard (PrepWizard) in Maestro

[60] was used to prepare the proteins in this study. Table 2

lists all of the settings explored in this work along with a

brief description. Below we describe each of the settings.

H-bond optimization (ProtAssign)

The hydrogen bonding (H-bond) network was optimized by

sampling 180� flips of the terminal chi angle for Asn, Gln,

and His, which significantly changes the spatial H-bonding

capabilities of the side chains, but does not appreciably

change the fit to the electron density. Neutral and proton-

ated states of His, Asp, and Glu were also sampled along

with the two His tautomers (proton on either the Nd or Ne
nitrogen). In addition, hydrogens on hydroxyls and thiols

were sampled to optimize the H-bond network. The Prot-

Assign algorithm can be run in a ‘‘standard’’ mode that

typically takes a few seconds or an ‘‘exhaustive’’ mode

where many more states are considered, which can run for

minutes or hours depending on the complexity of the

H-bond networks. The standard mode performs full sam-

pling of all states for H-bond clusters with up to 100

combinations and Monte Carlo sampling for clusters with

more than 100 possible states. The exhaustive mode per-

forms sampling of all states for H-bond clusters with up to

10,000 combinations and Monte Carlo sampling for clus-

ters with more than 10,000 possible states.

Protein minimization (Impref)

In the recommended protein preparation protocol, after

H-bond optimization, the entire structure is allowed to

relax using the Impref module of Impact [61] and the

OPLS_2005 force field [62–64]. The options explored for

protein minimization included hydrogen only or all-atom

with a termination criterion based on the root-mean-square

deviation (RMSD) of the heavy atoms relative to their

initial location.

Waters

The treatment of explicit water molecules can influence

docking accuracy and enrichment results, as previously

demonstrated by others [23, 65–69]. However, the deter-

mination of which waters to retain is difficult, primarily

because the free energy of a water molecule is not directly

related to the crystallographic occupancy [70]. While it

was not our intention to exhaustively explore all possible

treatments of water molecules, we explored one specific

consideration: whether or not to keep water molecules in

the structure for the H-bond optimization and protein

minimization stages. It is possible, for example, that

without explicit water molecules the protein could collapse

in unphysical ways or that hydrogen bonding networks

required for ligand binding would be disrupted. In the case

where water molecules were retained through the H-bond

optimization and minimization stages, all water molecules

were removed prior to docking. A more extensive study of

Table 3 Enrichment statistics for virtual screening calculations run

on the exploratory set with different preparation protocols

Enrichment metric Min. Max. Mean Median

HTVS

BEDROC(a = 160.9) 0.28 0.38 0.34 0.34

BEDROC(a = 20) 0.37 0.43 0.41 0.41

EF(1 %) 17.8 23.2 21.1 21.5

SP

BEDROC(a = 160.9) 0.30 0.42 0.37 0.38

BEDROC(a = 20) 0.42 0.53 0.49 0.50

EF(1 %) 20.6 27.8 24.8 25.4

Each value refers to an average enrichment from the 36 targets.

Statistics are computed separately for the Glide HTVS and SP

Table 4 Enrichment results for targets in the exploratory set using

three H-bond optimization settings with ProtAssign

Enrichment metric None Standard

sampling

Exhaustive

sampling

HTVS

BEDROC(a = 160.9) 0.33 0.34 0.34

BEDROC(a = 20) 0.42 0.43 0.43

EF(1 %) 21.2 22.4 23.2

SP

BEDROC(a = 160.9) 0.34 0.39 0.38

BEDROC(a = 20) 0.48 0.50 0.50

EF(1 %) 22.6 26.6 26.2

Results are for no Impref minimization with all water molecules

removed and the ligands prepared with Epik using metal binding

states. Larger values are better
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the role of waters in docking and how to incorporate water

energetics will be the focus of a future publication.

Docking

All docking calculations were performed with Glide v5.7

[71]. Calculations were run in either the HTVS mode

(High-Throughput Virtual Screening) using default settings

(1–2 s for a typical drug-like compound) or the SP mode

(Standard Precision), which performs more extensive

sampling (10–20 s per compound). Docking grids were

generated with the default settings in Glide using the co-

crystalized ligand to define the center of the grid box.

Enrichment calculations

For enrichment calculations, we saved the top pose for

each ligand (based on Emodel) and ranked all ligands by

the DockingScore. The DockingScore consists of the

GlideScore plus any additional penalties associated with

the Epik tautomer/ionization state assignment for the

ligands. We report the enrichment factor (EF) for the top

1 % of the database as well as the Boltzmann-enhanced

discrimination of the receiver operating characteristic

(BEDROC) [72]. We use a = 160.9 and a = 20 for the

BEDROC calculations, the former corresponding to 80 %

of the maximum contribution to the BEDROC score being

accounted for in the top 1 % of the database screen and the

latter corresponding to 80 % of the score being accounted

for in the top 8 % of the screen. In all cases, earlier parts of

the hit list count more heavily in the BEDROC score based

on a Boltzmann weighting. Although BEDROC has highly

desirable characteristics, such as a smooth functional form

that is not highly sensitive to small changes in the ranking

of compounds around a specific cutoff value and being

more sensitive to the very early part of the ROC curve, we

continue to use the more common EF(1 %) metric because

it can be compared directly to results from other papers

and the numerical results are in general more intuitive to

understand. We do not present results using the popular

area under the receiver-operating characteristic curve

(AUC) because that metric is not good for assessing early

enrichment. For example, an ROC curve with a value of

0.5 is generally interpreted as random; however, if 50 % of

the actives are retrieved in the earliest part of the screen

and the other 50 % of the actives are missed completely

that will result in an AUC of 0.5, yet the results are highly

predictive in the early part of the ROC curve. Such results

may indicate that there are multiple binding modes or

significant induced-fit effects that allow only a subset of

the ligands to dock well. However, the EF(1 %), BED-

ROC(a = 160.9), and BEDROC(a = 20) metrics would

correctly produce enrichment results significantly better

than random.

Results

In this work, we perform an extensive study of steps

involved in the protein and ligand preparation process by

varying the settings in the Protein Preparation Wizard

within Maestro and evaluating the effects on virtual

screening enrichments. In total, 2,592 virtual screening

calculations (36 targets, 3 LigPrep settings, 3 H-bond

assignment settings, 4 minimization settings, and 2

docking modes) were performed on an exploratory dataset

Fig. 1 Thymidine kinase (1kim) example of ProtAssign H-bond

optimization. A His58 before applying ProtAssign sampling makes no

hydrogen bonds to either the ligand or the protein. B After ProtAssign

sampling His58 changes tautomer and flips 180� in the terminal chi

angle, resulting in an intramolecular H-Bond with Tyr172 (yellow
dotted line). In addition, ProtAssign also generates hydrogen bonds

from the ligand to Tyr101 and Glu83
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consisting of 1,000 decoys and 7–36 actives per target (the

Glide validation set). We then apply a subset of the prep-

aration protocols to forty targets from DUD. The enrich-

ment statistics for the exploratory set aggregated over all of

the virtual screening calculations with Glide HTVS and SP

(36 virtual screening calculations for each of the 36 targets

in the exploratory set for each docking mode) are shown in

Table 3.

Table 3 shows that the enrichment results vary, on

average, between the virtual screening calculations with

different preparation settings and that there is a significant

difference between the best and worst protocol. However,

the averages across 36 targets mask the true variability that

can be observed for a single target, since a given stage in

the preparation process may not matter for one protein

but might have a large effect for another protein. In the

following sections, we first analyze the variability in

enrichment for each individual step of the preparation

process keeping the other steps fixed. We then provide a

meta-analysis where the combined preparation process is

separated into minimal, intermediate, and full preparation

of the protein plus a final setting that combines full protein

preparation plus full ligand preparation.

H-bond optimization (ProtAssign)

The H-bond optimization step (called ProtAssign) creates

the best network of hydrogen bonds by placing/rotating

hydrogens and functional groups that do not impact the

electron density (Asn, Gln, and His). The optimized state

was then subjected to force field minimization of only

hydrogen atoms while keeping all other atoms fixed.

Fig. 2 Examples where ProtAssign improves the scoring of an active

ligand. A MMP3 (1g49) without ProtAssign no hydrogen bond is

formed with Asp702. B With ProtAssign the carboxylate group of

Asp702 is protonated, resulting in an H-bond with the hydroxamic

acid group of the ligand (yellow dotted line). In addition, the

orientations of the hydroxyl group of Tyr720 and the protonation state

of His724 differ between the two cases. The active ligand shown is

ranked 22 (not in the top 1 %) when ProtAssign is not used and

improves to 10 (in the top 1 %) when ProtAssign sampling is

performed. Similarly, the EF(1 %) values improve from 15.2 to 30.3

with ProtAssign. C Squalene synthase (1ezf) without ProtAssign

forms only one H-bond from the carboxylate to the receptor.

D ProtAssign samples the Ser53 hydroxyl to form an H-bond with

the native ligand
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Table 4 shows the results for three ProtAssign settings

(none, standard, and exhaustive; see Table 2 and Methods

for definitions). There is a significant improvement when

ProtAssign sampling is performed. A majority of the tar-

gets (20 of 36) show improvement in the EF(1 %) values

when performing ProtAssign sampling, while 5 targets

show degradation and 11 show no change in enrichment.

Table S1 in the Supporting Information provides all of the

enrichment values for each target and for each setting.

ProtAssign sampling ensures that an optimized H-bond

network is generated for interactions with the co-crystal-

ized ligand, which is likely to be a good configuration for

other active ligands as well. However, binding of different

ligands can induce changes in the protein that are not

accounted for in the rigid receptor docking work performed

here. To account for such effects one would need to con-

sider a structural ensemble or sample receptor flexibility

explicitly in docking; neither of these directions was

explored in this work. Interestingly, the exhaustive sam-

pling does not provide improvement over standard sam-

pling, suggesting that in most cases the standard sampling

is sufficient to generate a good H-bond network for

docking.

As an example of the effect of H-bond optimization, a

large improvement in enrichment is observed for thymidine

kinase (1kim) after running ProtAssign, where the EF(1 %)

enrichment increases from 57.8 to 86.6 (50 % improve-

ment). In this case, ProtAssign flips the terminal torsion of

His58 by 180� and exchanges the proton from the Nd
position to the Ne position, thereby forming an H-bond

with Tyr172 (see Fig. 1). This H-bond is known to be

important for binding to ribose and pyrimidine derivatives

[73]. Interestingly, many of the good scoring active ligands

dock far from His58, so it is unlikely that the change in

His58 has a direct impact in the DockingScore of the active

compounds. However, we notice that the scores of the

docked compounds in general improve when ProtAssign

sampling is used. For example, the average DockingScore

of the actives improves from -9.3 to -9.6 kcal/mol.

However, the average DockingScore of the decoys in the

top 1 % database increases almost as much (from -9.1 to

-9.3 kcal/mol). Figure 1 shows His58 in the initial state

and the state after ProtAssign in thymidine kinase. The

active shown in Fig. 1 improves from rank 46 to 11.

Aldose reductase (2acq) and HIV protease (1hpx) are

other cases where large improvements are seen with

H-bond optimization. For aldose reductase the EF(1 %)

increases from no signal to a value of 16.8 upon protassign

sampling. The primary structural change is seen in His110,

which exhibits a change in tautomer and a 180� flip relative

to the crystal structure that leads to a hydrogen bond with

the co-crystal ligand. This hydrogen bond is not possible

with the crystal structure histidine state, either with the

proton on the Nd or Ne position. In addition, Asn160 and

Gln183 undergo side chain amide flips. In the case of HIV

protease, the EF(1 %) improves from 47.2 to 60.6 as a

result of one of the catalytic Asp residues becoming pro-

tonated to share a hydrogen between the two Asp residues

upon H-bond optimization.

Figure 2A shows an example where H-bond optimiza-

tion in MMP3 (PDB code 1g49) correctly determines the

H-bond network, thereby resulting in an increased enrich-

ment, from 15.2 to 20.2 for EF(1 %). With H-bond opti-

mization the carboxylate group of Glu702 is protonated,

resulting in an H-bond with the ligand. In addition, the

orientation of the hydroxyl group of Tyr720 and the pro-

tonation state of His724 make improved interactions with

the ligand after H-bond optimization. The active ligand

shown in Fig. 2A is ranked 22 when H-bond optimization

is not performed, whereas it improves to 10 (in the top

1 %) after H-bond optimization, with a DockingScore

improvement from -10.7 to -12.3 kcal/mol. Figure 2B

shows an example in squalene synthase (PDB code 1EZF;

also called farnesyl-diphosphate farnesyltransferase) where

H-bond optimization improves the orientation of the Ser53

hydroxyl to form an H-bond with the native ligand.

Five targets show decreases between 3.1 and 10.8 in the

EF(1 %) values. In the case of HIV reverse transcriptase

(1ep4) and acetylcholinesterase (1eve), the decreases are

relatively small. However, another acetylcholinesterase

structure (1e66) shows the maximum decrease in enrich-

ments upon ProtAssign sampling. With ProtAssign, His440

becomes protonated along with a rotation in the hydroxyl

group of Ser200. This results in the loss of an H-bond

between Ser200 and His440 residues. In addition, Tyr130

exhibits a change in the hydroxyl torsion. These changes

result in a reduction in the Coulombic contribution to the

DockingScore for many of the actives. For example, the

Table 5 Enrichment results for targets in the exploratory set using

four minimization settings with Impref

Enrichment metric Heavy atom RMSD cutoff

0.0 Å 0.15 Å 0.30 Å 0.50 Å

HTVS

BEDROC(a = 160.9) 0.33 0.36 0.37 0.36

BEDROC(a = 20) 0.43 0.42 0.43 0.41

EF(1 %) 22.4 22.0 22.8 21.1

SP

BEDROC(a = 160.9) 0.39 0.40 0.42 0.41

BEDROC(a = 20) 0.50 0.51 0.53 0.52

EF(1 %) 26.6 26.0 27.0 27.8

Results are for default ProtAssign sampling with all water molecules

removed and the ligands prepared with Epik using metal binding

states
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average Coulomb energy of all the docked actives is

-5.9 kcal/mol with ProtAssign and -8.7 kcal/mol without

ProtAssign. Looking at the Coulombic contribution for the

docked decoys in the top 1 % of the database, the average

Coulomb energy when ProtAssign is used is -13.1 and

-14.4 kcal/mol when no ProtAssign is used. It should be

noted that the actives and high-ranking decoys of acetyl-

cholinesterase contain charged groups. In the case of 1eve,

His440 does not get protonated by ProtAssign and the

H-bond is retained with Ser200, resulting in higher

enrichment. Cases like this indicate that manual inspection

of the protein before docking is important to correct any

errors or inconsistencies introduced into the structure dur-

ing automatic preparation.

Protein minimization (Impref)

Next we explored the effect of protein minimization using

the Impact [61] refinement module (Impref). Impref

involves a 2-step relaxation where first the rotatable

hydrogen atoms are allowed to minimize with the torsional

potential removed, which is followed by a full minimiza-

tion of all atoms that is terminated either when the system

is fully converged or when it reaches a user-specified

RMSD cutoff for the heavy atoms. Here, we explored no

minimization of the heavy atoms (hydrogens only) or an

RMSD cutoff value of 0.15, 0.30, or 0.5 Å for the heavy

atoms. Table 5 shows the average enrichment results with

three Impref settings applied after standard sampling in

Fig. 3 Effect of Impref RMSD on an active ligand of P38 MAP kinase (1a9u). A Keeping the heavy atoms fixed during minimization.

B Minimization with RMSD of 0.3 Å results in a better hydrogen bond interaction with the backbone of Met109 in the hinge (yellow dotted line)

Fig. 4 Structural changes with

different Impref minimization

RMSD cutoffs. A P38 MAP

kinase (1a9u; DFG-in) co-

crystalized ligand minimized

with Impref RMSD cutoff of

0.15, 0.3, and 0.5 Å. B Active

site of thymidylate synthase

(2bbq) showing minimal

structural difference when

minimized by restraining all

heavy atoms and minimized

with 0.3 Å RMSD cutoff. The

blue and brown colored carbons
distinguish between the two

structures
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ProtAssign. As seen, the minimization protocol improves

the average enrichments, with the best value for both

HTVS and SP being obtained with an RMSD cutoff of

0.30 Å. In total, 16 systems get better, 9 systems get worse,

and 11 systems remain unchanged in terms of EF(1 %) in

the SP docking mode after running minimization. In terms

of BEDROC(a = 20) enrichments, 23 targets show

improvement while the remaining 13 targets show a

degradation.

The target showing the most significant improvement in

enrichment upon Impref minimization is P38 MAP kinase

(1a9u), which improves the EF(1 %) from 13.9 to 24.4.

Interestingly, the structural changes were subtle, with most

of the differences being in loops around the active site.

Figure 3 shows the formation of an added hydrogen bond

to the hinge when Impref minimization is done with an

active compound whose rank improves from 18 (Dock-

ingScore -7.7 kcal/mol) to 3 (DockingScore -8.8 kcal/

mol) with heavy atom relaxation using an Impref RMSD of

0.3 Å. Figure 4A shows an example of the structural

changes in the ligand with different RMSD cutoffs for P38

MAP kinase. The hinge H-bond interaction in kinases is

very important for molecular recognition and binding

affinity. The small movements of atoms from the minimi-

zation improve this interaction, highlighting that even

subtle changes in protein structure can have a large effect

on virtual screening enrichments.

As with the previous results for H-bond optimization,

we also find a few cases where enrichments get worse with

minimization, such as thymidylate synthase (2bbq), which

degrades from EF(1 %) of 40.4–30.3. The exact reasons for

the degradation are not entirely clear, since the structural

changes are minimal. Figure 4B shows the superposition of

the binding site residues before and after the minimization.

In most of the cases where enrichment degrades, the exact

cause is difficult to pinpoint.

Ligand preparation (LigPrep and Epik)

Next, we explored the effect of ligand preparation, where

tautomers and ionization states were generated with either

the ionizer/tautomerizer utilities (simple pattern matching

for functional groups) or Epik (based on the Hammett and

Taft methodologies, which account for substituent effects).

In addition to generating states, Epik also assigns an

energetic penalty for each ligand state, which can be added

to the GlideScore to produce the final DockingScore. We

also explored a mode in Epik to account for metal binding

states, which generates higher-energy states that have the

possibility to recuperate the energetic cost upon binding to

a metal ion. Table 6 shows the enrichment results for each

of the three ligand preparation settings on the Glide

exploratory set. Epik shows a consistent improvement over

the ionizer/tautomerizer (7.7 % BEDROC improvement

for HTVS and 6.3 % for SP) and Epik with metal binding

states shows a further improvement (10.2 % BEDROC

improvement for HTVS and 10.4 % for SP). A total of 23

systems get better and 13 systems get worse after running

Epik with metal binding states based on the BED-

ROC(a = 20) metric.

Looking at the three targets with metal binding sites

(thermolysin, MMP-2, and MMP-3), the average

improvement in BEDROC(a = 20) is 77.4 % for SP and

71.9 % for HTVS when using the metal binding states

mode of Epik over using simply Epik without special metal

binding states, emphasizing the importance of generating

the right ligand states for binding to metals (see Table 7).

In addition, including metal binding states does not sig-

nificantly degrade the enrichment for targets without met-

als in the binding site, validating that inclusion of metal-

specific binding states and the associated penalty term is

handled adequately with Glide. The metal binding mode

has the most significant effect on MMP2 and MMP3. The

metal binding groups for MMP2 and MMP3 are mainly

based on hydroxamic acid derivatives, which are neutral at

pH 7 ± 2 and require the special metal binding state

treatment in Epik to generate the negative forms, hence the

significant improvement in enrichments when using the

metal binding mode in Epik for MMP2 and MMP3.

The metal binding mode of Epik has minimal effect on

thermolysin, since the active compounds contain either

carboxylate or phosphate metal binding groups, which are

already deprotonated at pH 7.0.

The largest improvements in enrichment when including

Epik calculations come from squalene synthase (1ezf),

thymidylate synthase (1syn), and thymidine kinase (1kim),

which show an improvement in EF(1 %) of 25.3, 20.2, and

14.4, respectively. In many cases, decoy molecules get

very good docking scores when prepared with the ionizer/

tautomerizer because unreasonable states are generated

Table 6 Enrichment results for targets in the exploratory set using

three ligand preparation settings

Enrichment metric Ionizer/

tautomerizer

Epik Epik ? metal

binding states

HTVS

BEDROC(a = 160.9) 0.34 0.37 0.38

BEDROC(a = 20) 0.39 0.42 0.43

EF(1 %) 22.0 22.1 22.8

SP

BEDROC(a = 160.9) 0.37 0.41 0.42

BEDROC(a = 20) 0.48 0.51 0.53

EF(1 %) 24.4 26.6 27.0

Results are for standard ProtAssign sampling and Impref minimiza-

tion using a 0.3 Å RMSD with all water molecules removed during

the preparation
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without an associated energetic penalty. For example,

squalene synthase has several decoys that produce multiply

charged ligands states with the ionizer that score better than

the singly charged ligand states. There are four decoys in

the top 1 % database with formal charges ranging between

-3 and -5. They receive good GlideScore values due to

the strong electrostatic interactions that are not compen-

sated by the associated penalty required to generate the

state. Figure 5 shows some of the top scoring squalene

synthase decoys along with the docking ranks and Epik

state penalties. As can be seen, these compounds all have

high Epik state penalties. Epik would not have generated

most of them even with the pH 7.0 ± 4.0 setting. For those

cases that would have been generated, their DockingScore

would not have placed them in the top 1 % of the database

screen.

As an example, the ionizer generates state B4 in Fig. 5,

which has a formal charge of ?5 and an Epik state penalty

of 26.5 kcal/mol. Not considering the energetic penalty of

generating this state, the ligand ranks #3 in the database

screen as a result of some very favorable electrostatic

interactions that get reflected in the GlideScore. However,

penalizing this state by adding the Epik penalty to the

GlideScore to produce the DockingScore prevents it from

competing with any of the active compounds and would

place it near the end of the screening hit list. Indeed, Epik

does not even generate this state with the settings used in

this work. Similarly B1, B2, and B3 in Fig. 5 score well

with the GlideScore, but have Epik state penalties of 4.0,

17.6, and 21.0 kcal/mol, respectively. Again, adding the

Epik state penalty to the GlideScore to obtain the Dock-

ingScore results in these decoy compounds scoring sig-

nificantly worse in the screening hit list.

While using the ionizer/tautomerizer generally yields

more states than Epik, some of which are unreasonable (see

preceding paragraphs), it also misses some important states

due to the simple pattern-based rules. Some examples of

ionization/tautomer states for active ligands generated by

Epik and not with the ionizer/tautomerizer are shown in

Fig. 6. These compounds typically contain multiple nitro-

gen atoms in a single ring or conjugated ring system where

a single pattern-based system would have difficulties unless

the exact pattern was encoded. On the other hand, the

methodology in Epik accounts for more complex systems

and substitution effects, thereby finding many more of the

relevant ionization and tautomer states. For the active

compounds in Fig. 6, they are all retrieved in the top 1 %

of the database screen when Epik is used for preparation

whereas none of them are in the top 1 % with ionizer/

tautomerizer preparation.

Analysis of DUD screening results

To simplify the analysis of all of the settings explored here,

we compressed the 36 possible combinations of settings

into 4 general levels of preparation: Minimal, Intermediate,

Full, and Full ? Ligand. Minimal preparation involves

only minimizing hydrogen atoms. Intermediate adds Prot-

Assign H-bond optimization. Full preparation adds Impref

minimization of the protein with RMSD of 0.3 Å after

H-bond optimization. Finally, Full ? Ligand adds Epik

ligand preparation with metal binding states to the Full

protocol. The enrichment results for these 4 protocols run

on the Glide validation set and DUD exploratory sets with

the HTVS mode of Glide are shown in Table 8.

We see that more complete protein preparation consis-

tently results in higher enrichments. For example, the

average EF(1 %) enrichment obtained for the Glide vali-

dation set using HTVS Glide docking with the Minimal

preparation is 17.8 whereas the best results of 22.8 are

obtained with Full ? Ligand preparation (28 % improve-

ment over Minimal preparation). Similar improvements

Table 7 Enrichment results for targets in the exploratory set with metal binding sites

Target PDB code Enrichment metric HTVS SP

Epik Epik ? metal binding states Epik Epik ? metal binding states

Matrix metalloproteinase-2 1hov BEDROC(a = 160.9) 0.006 0.20 0.11 0.33

BEDROC(a = 20) 0.13 0.30 0.19 0.40

EF(1 %) 0.0 15.2 5.0 20.2

Matrix metalloproteinase-3 1g49 BEDROC(a = 160.9) 0.38 0.52 0.35 0.39

BEDROC(a = 20) 0.30 0.52 0.29 0.63

EF(1 %) 20.2 30.3 20.2 20.2

Thermolysin 1tmn BEDROC(a = 160.9) 0.41 0.42 0.65 0.65

BEDROC(a = 20) 0.60 0.67 0.65 0.68

EF(1 %) 30.3 30.3 60.6 60.6

Results are for standard ProtAssign sampling and Impref minimization using a 0.3 Å RMSD cutoff with all water molecules removed during the

preparation
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(21 %) are observed on the DUD test set for the HTVS

docking mode. In addition, Full ? Ligand produces the

best average results for the Glide exploratory set using

Glide SP as well (31 % improvement of Full ? Ligand

over Minimal on the Glide exploratory set). In addition, the

observed improvements when applying more complete

preparation are statistically significant, as seen in Table 9,

based on p value analysis as proposed by Nicholls for

evaluating virtual screening results [74]. The advantage of

Full ? Ligand over the Minimal and Intermediate prepa-

ration protocols is significant at the 0.05 level for both the

Glide exploratory set and DUD test set. The advantage of

Full ? Ligand over Full preparation is less significant,

suggesting that including Epik ligand preparation does not

improve results as much as the protein preparation steps.

Nonetheless, the Full ? Ligand preparation is, on average,

better than the Full preparation without including Epik

states for the ligands for the Glide exploratory set and DUD

test set.

The role of water

Up to this point, all systems were prepared with water

molecules removed prior to any preparation steps. How-

ever, it is interesting to consider the implications of pre-

paring the targets with binding site waters present and then

removing them before docking. Doing this, we found very

little change in average enrichments if water molecules

were retained or eliminated prior to the protein preparation

process. For example, with the Full ? Ligand preparation,

Epik Ionizer/tautomerizer

1 

#14             0.0 kcal/mol #8                       4.0 kcal/mol

2 

#23             0.2 kcal/mol #7                   19.9 kcal/mol

3 

#158         1.6 kcal/mol #5                  27.3 kcal/mol

4 #222               2.6 kcal/mol #4               27.3 kcal/mol

Fig. 5 Decoys of squalene

synthase (1ezf) generated by

Epik (left) and the ionizer/

tautomerizer (right). The ranks

(above left) in the docking

screen and Epik state penalty

(above) are shown. As discussed

in the text, unreasonable states

generated by the ionizer/

tautomerizer lead to poor

enrichments due to artificially

good scoring of decoys arising

from favorable interactions with

the receptor that are not

properly compensated by the

appropriate ionization/tautomer

penalty
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the average EF(1 %) enrichment for Glide SP on the Glide

exploratory set changes from 27.0 without water molecules

to 26.9 with water molecules in the preparation. Similar

small changes are observed for Glide HTVS. These results

suggest that retaining water molecules for the preparation

process and then eliminating them before docking is

inconsequential, on average, to the overall enrichment

results. However, this is an incomplete study on the role of

waters in virtual screening and more work is needed to

determine the best way to treat water molecules during

docking. For example, it is possible to retain water mole-

cules during docking, which was not explored here. In

addition, the presence or absence of waters can be treated

as additional degrees of freedom in the docking calcula-

tions, which has been tried by others [75–77]. To treat

water molecules in a more meaningful way, it will be

necessary not only to treat their presence or absence as

additional degrees of freedom in the docking calculations,

but also to consider the energetic consequences of dis-

placing, bridging, trapping, or avoiding binding site waters.

Recent progress in the field has brought us closer to

understanding the thermodynamic characteristics of bind-

ing site waters [78, 79] and successful attempts have been

made to produce a composite scoring function that

accounts for the energetics of explicit waters [80, 81].

Future work will incorporate this information into the

virtual screening process.

Variations in PDB structures

Finally, we explored the variation in enrichment observed

for different crystal structures of the same target. The

average range of EF(1 %) between targets with multiple

crystals in the exploratory set is 11.9 (see Table 1), high-

lighting the known sensitivity of enrichment results to the

choice of crystal structure. Similar variations have been

shown in recent ensemble docking studies [46, 47, 82]. The

greatest variation comes from COX2, in which 1cvu with

Full ? Ligand preparation produces an EF(1 %) of only

6.1 whereas 1cx2 results in an EF(1 %) of 33.7. However,

upon closer investigation it was found that 1cvu is not a

wild-type sequence of COX-2, as it contains an important

Fig. 6 States for active ligands generated by Epik and not with the

ionizer/tautomerizer. Each active is annotated by target, best rank

from docking the Epik generated ligand states, and best rank from the

ionizer/tautomerizer generated states. The star denotes the location

where Epik produces a good state for docking that is missed by the

ionizer/tautomerizer. All ranks are from Glide SP

Table 8 Average EF(1 %) enrichment values for the Glide explor-

atory set and DUD test set using four preparation protocols

Database Preparation

Minimal Intermediate Full Full ? ligand

Glide 17.8 19.7 22.1 22.8

DUD 12.0 12.2 14.1 14.6

Minimal involves minimizing only the hydrogen coordinates. Inter-

mediate preparation adds H-bond network optimization prior to

hydrogen minimization. Full preparation adds protein minimization

(RMSD = 0.3 Å) after H-bond optimization. Full ? Ligand prepa-

ration adds Epik ligand preparation to the Full protein preparation

Table 9 Significance level of the EF(1 %) enrichment differences

between the preparation protocols shown in Table 8

Min Inter Full Full ? ligand

Glide

Min 1 0.952 0.999 1.000

Inter 0.047 1 0.974 0.980

Full 0.001 0.025 1 0.732

Full ? ligand 0.000 0.020 0.268 1

DUD

Min 1 0.624 0.996 0.986

Inter 0.376 1 0.972 0.96

Full 0.004 0.028 1 0.682

Full ? ligand 0.014 0.04 0.318 1

p-values are computed as described by Nicholls [74], with lower

values indicating more significance
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active site mutation of His207 to Ala. Therefore, the poor

screening results with 1cvu might be expected, since active

ligands might not bind as well (or at all) with His207

mutated to Ala.

Notable EF(1 %) enrichment changes in the other tar-

gets include estrogen receptor (range of 20.3), neuramini-

dase (range of 15.1), and thrombin (range of 12.7).

Developing a method to choose a good single crystal

structure for virtual screening is beyond the scope of this

work. However, the variations seen here clearly demon-

strate the importance of receptor structure selection and the

need for a method to facilitate the receptor structure

selection process.

Conclusions

In this work, we have presented a thorough study of the

steps involved in protein and ligand preparation and the

implications for structure-based virtual screening enrich-

ments. We found that more complete preparation does

indeed produce better virtual screening enrichments. The

best virtual screening enrichments were obtained with a

full preparation of the protein and inclusion of energeti-

cally accessible ligand ionization/tautomeric states. While

the results were in line with expectations, a number of

interesting findings arose from this study. First, performing

an intermediate level of preparation, which includes pre-

dicting the hydrogen bonding network, but not minimizing

the protein geometry, provided only a small improvement

in enrichment results over minimizing only hydrogen

coordinates. The full protein preparation, which includes

both H-bond network optimization and geometry minimi-

zation, was needed to obtain significantly better results than

the minimal preparation. In addition, a further gain in

enrichment was observed when the energetic penalty for

the ligand states, as computed by Epik, was added to the

GlideScore. A number of examples were presented to

illustrate the various changes that accounted for the dif-

ferences in enrichments. Of notable interest were cases

where proper protein preparation did not result in better

scoring of actives, but resulted in worse scoring of decoys

due to the elimination of unphysical protein or ligand

states.

While many parameters were explored in this work, it

was not an exhaustive study. For example, we only

explored water molecules to the extent that they should be

retained or removed before the preparation process. A more

complete treatment would include the ability for waters to

be explicitly included in the docking calculations so that

they could be displaced, bridged, trapped, or avoided.

In addition, the energetics of the water molecules in

the aforementioned scenarios should be considered.

In addition, we made no efforts to model residues with

missing density or multiple occupancy. While there were

not many residues around the binding sites with missing

atoms or multiple occupancy, it is possible that changes in

the results could be observed with differing treatments of

atoms with missing density. Studying the effects of dif-

ferent crystal structure refinement protocols and how to

deal with missing density and multiple occupancy will be

the focus of a future study from our group where we

explore the inclusion of x-ray diffraction data in the

refinement protocols. Another limitation in this study was

the docking to only a single rigid receptor structure. Recent

results using Glide suggest that significantly better results

can be obtained by using a well-selected structural

ensemble [25]. We plan to pursue these points in more

detail in future work.
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