
More than one-third of the bacterial proteome that is syn-
thesized on cytoplasmic ribosomes is exported to extra-
cytoplasmic locations, where the polypeptides acquire 
their native functional states. These proteins are either 
membrane-embedded (comprising the ‘membranome’; 
FIG. 1a) or are secreted to the trans side of the plasma 
membrane1; for example, to the periplasm (comprising 
the ‘secretome’). Typically, export temporally delays pro-
tein folding and alters the cellular topology of this process, 
as most proteins are exported in unfolded states (FIG. 1a).

Protein trafficking to, into and across membranes 
is an essential, finely tuned process. Exported pro-
teins overcome several challenges2 (FIG. 1b): they avoid 
cytoplasmic folding and maintain unfolded, but solu-
ble, states (that is, the ‘translocation-competent state’); 
they become sorted from cytoplasmic proteins; they 
are targeted to export points at the plasma membrane 
with high fidelity; they allosterically activate specialized 
export channels; they translocate laterally into, or to, 
the trans side of the membrane in an energy-dependent 
manner; and they are sorted to their final destination 
and/or become folded3.

Bacteria have evolved several sophisticated export 
mechanisms for cell envelope and membrane bio-
genesis (BOX 1; FIG. 1c). Among these, only the general 

secretory (Sec) pathway is essential for viability and is 
ubiquitous in all domains of life4. The central compo-
nent of the Sec system is the transmembrane SecYEG 
channel (also known as the SecYEG translocon; SEC61 
in eukaryotes; FIG. 1c), which translocates proteins 
into, or across, the plasma membrane. Bacteria have 
an additional essential component, the ATPase motor 
SecA, that assembles with SecYEG at the plasma mem-
brane to form the translocase holoenzyme, recognizes 
exported proteins with high affinity (Supplementary 
information S1 (table)) and mediates chemo–mechanical  
conversion during transmembrane crossing (FIG. 1c). 
Some Gram-positive bacteria have additional accessory 
copies of SecYEG and/or SecA5, known as the SecY2  
and SecA2 paralogues (for example, Streptococcus spp. and  
Mycobacterium spp., respectively). Auxiliary compo-
nents, such as SecDF–YajC6,7 and YidC6,8,9, have been 
shown to enhance translocation efficiency.

Escherichia coli uses the Sec pathway for around 
96% of its exportome1. These proteins are dissimilar in 
sequence, and cell envelope topology and concentra-
tion (Supplementary information S2 (table)); 60% are 
plasma membrane proteins1. All Sec-dependent secre-
tory proteins, and some plasma membrane proteins, 
are synthesized as pre-proteins that have cleavable signal  

Membranome
The portion of the bacterial 
exportome that is integrated 
into the plasma membrane 
(approximately 22% of the 
total proteome of Escherichia 
coli K12).
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Figure 1 | Bacterial protein export. a | Newly synthesized 
cytoplasmic proteins fold (pathway 1) during, or 
immediately following, synthesis, with the exception  
of intrinsically disordered proteins (IDPs; pathway 2).  
Almost half of the bacterial proteome is exported to 
extracytoplasmic locations (exportome) in which 
polypeptides acquire their native functional states. These 
proteins are either membrane-embedded (comprising the 
‘membranome’) or secreted to the trans side of the plasma 
membrane; for example, to the periplasm or to, and 
beyond, the outer membrane (comprising the ‘secretome’). 
Most exported proteins evade cytoplasmic folding 
(pathway 3), with the exception of a minority of proteins 
that are exported in a folded state (pathway 4), and are 
sorted to their final destination and/or become folded3. 
Numbers in this panel represent different pathways and 
not sequential steps. b | Protein export comprises three 
stages: sorting and targeting (step 1), translocation (step 2), 
and maturation and release (step 3). Exported proteins face 
several challenges: they must remain unfolded and soluble, 
they must be sorted from cytoplasmic residents, they need 
to be correctly targeted to transmembrane channels and 
activate channel opening, they use energy to translocate, 
become released and undergo sorting and/or folding in the 
cell envelope. c | Sec-pathway-dependent export stages. 
Sorting and targeting (step 1): unfolded proteins (orange) 
that contain signal peptides (green) and plasma membrane 
proteins are co-translationally sorted and targeted to the 
transmembrane SecYEG channel (yellow) by the signal 
recognition particle (SRP; purple) and its membrane 
receptor FtsY11 (pink), or, post-translationally, by SecA 
(blue)12. Chaperones aid post-translational targeting: 
trigger factor (dark green)22,24 and the ATPase motor 
SecA12,14 bind to pre-proteins on the ribosome or in the 
cytoplasm; the chaperone SecB (red) binds to them in  
the cytoplasm2. Pre-proteins may be targeted to the SecYEG– 
SecA translocase in a chaperone-independent manner. 
Translocation (step 2): pre-proteins translocate through 
SecYEG to the periplasm or into the plasma membrane2, 
the process of which is powered by repeated cycles of ATP 
binding and hydrolysis by SecA16,144 and the proton motive 
force (PMF)16. The auxiliary components SecDF–YajC6 
(brown) and YidC11 (light orange) enhance translocation 
efficiency. Maturation and release (step 3): signal 
peptidases (SPases; pale pink) cleave signal peptides 
and the mature domain is released into the periplasm21. 
d | All Sec-dependent secretory proteins, and some plasma 
membrane proteins, are synthesized as pre-proteins. 
Pre-proteins contain signal peptides (left panel), which are 
fused to mature domains at the amino terminus, that act  
as sorting and targeting tags in the cytoplasm and are 
proteolytically cleaved at late stages of translocation10. 
Signal peptide properties and regions2,10 (left panel). The 
N-terminal region (N) of signal peptides is mostly positively 
charged. Autotranporters (AT) have an N-terminal 
extension (N-AT) of varying length. The helical hydrophobic 
region (H) engages either SRP11,59,60 or SecA42 or trigger 
factor24. The mainly polar carboxy-terminal region (C) 
contains the AXA SPase cleavage motif21. Signal peptide 
binding to the ATPase motor SecA (blue; RCSB Protein 
Data Bank (PDB) entry 2VDA; right panel)42. Signal peptides 
(green) bind through their H regions to an elongated 
hydrophobic groove (grey) in SecA that is formed by the 
pre-protein-binding domain (PBD) and intra-molecular 
regulator of ATPase 1 (IRA1), and electrostatically, through 
N-terminal regions, to acidic residues in SecA (red).  
aa, amino acids; HWD, helical wing domain.
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Secretome
The portion of the bacterial 
exportome that is exported 
beyond the plasma membrane 
(that is, to the periplasm, outer 
membrane, extracellular milieu 
or a host cell; approximately 
13% of the total proteome of 
Escherichia coli K12).
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conversion
The conversion of chemical 
energy, such as the energy that 
is produced through breaking 
chemical bonds during ATP 
hydrolysis, to mechanical work, 
such as the movement of 
protein domains or whole 
proteins.

peptides (FIG. 1d). These signal peptides are amino- 
terminally fused to mature domains and act as sorting and 
targeting signals2,10. Sec-pathway-dependent proteins are 
exported in unfolded states in three stages (FIG. 1c). First, 
they are sorted and targeted to the Sec translocase; second, 
they are translocated into, or across, the plasma mem-
brane; and, finally, they acquire mature forms through 
the cleavage of their signal peptides and are then released.

Proteins are targeted to the plasma membrane either  
co-translationally (mainly plasma membrane pro-
teins), by the ribonucleoprotein signal recognition 
particle (SRP) and its membrane receptor FtsY11, or post- 
translationally (secretory pre-proteins; FIG. 1c, step 1)2. 
Export-specific factors, such as SecA and the chaperone  
SecB, or general chaperones, such as trigger factor, 
mediate the post-translational targeting of proteins to 
free cytoplasmic SecA or SecYEG-bound SecA12,13 at late 
stages of synthesis or after the completion of translation 
and ribosomal release (FIG. 1c, step 1, middle; chaperone- 
dependent). SecA has also been identified in ribosome- 
bound states14,15, which highlights the possible role 
of ribosome-bound factors in determining the fate of 

emerging nascent polypeptide chains. Alternatively, 
pre-proteins traffic uncomplexed (chaperone- 
independent) from ribosomes to SecYEG–SecA. 
Pre-protein transmembrane crossing (FIG. 1c, step 2) 
is then energized by either the co-translating ribo-
some or, post-translationally, by metabolic energy 
from ATP hydrolysis (through SecA)16,17 and by the  
proton motive force (PMF)16,18,19. The insertion of proteins 
that lack long periplasmic segments into the plasma 
membrane is accomplished solely by SecYEG or by 
SecYEG in cooperation with the membrane protein 
insertase YidC20. Finally, signal peptides are proteo-
lytically cleaved from translocated mature domains21 
that are released for folding or further trafficking3 
(FIG. 1c, step 3).

The complexity of the Sec pathway and the steps that 
are involved is apparent and many questions regard-
ing the intricate details of the pathway have remained 
elusive. How are the numerous unrelated proteins that 
are destined for export selectively guided to the cor-
rect export route? Which ‘proof-reading’ mechanisms 
prevent the illicit export of some polypeptides, but 

Box 1 | The remarkable array of bacterial protein export systems

In bacteria, most exported proteins are transported across the plasma 
membrane through the Sec pathway12. YidC, alone or in complex with 
SecYEG, functions as an insertase for membrane proteins153. A minority of 
proteins that first fold and/or associate with cytoplasmic cofactors before 
crossing the plasma membrane are transported through the twin-arginine 
translocation (Tat) pathway154.

Gram-negative bacteria have specialized export systems (see the figure, 
one-step pathways, right): proteins that are involved in pathogenesis and 
nutrient scavenging are transported by the type 1 secretion system 
(T1SS)155. Flagellum proteins are transported by the flagellar T3SS and 
toxins are exported by the pathogenic T3SS156. Proteins and nucleic acids 
are injected into other cells, as virulence factors or as a means of genetic 
exchange, through the T4SS155. Pathogenic effectors are injected into a 
eukaryotic or bacterial target cell through the T6SS155.

Gram-positive bacteria have three specialized secretion systems (see the 
figure, one-step pathways, left): virulence proteins cross the cytoplasmic 
membrane through the T7SS157. Sortases recognize, cleave and attach 

proteins that have a carboxy-terminal sorting signal to the membrane 
and are responsible for the assembly of pilus structures157. Virulence 
factors or genes are injected into other cells by T4SSs155.

Once the Gram-negative plasma membrane is crossed, secretory 
proteins can be diverted to secondary secretion pathways (recently 
reviewed in REF. 3). Outer membrane proteins are assembled by the 
β-barrel assembly machine (Bam) complex or the translocation and 
assembly module (TAM)158. The soluble domains of outer membrane 
proteins can be secreted to the extracellular milieu through the T5SS155. 
Lipoproteins are transported from the plasma membrane to the outer 
membrane through the localization of lipoproteins (Lol) pathway159. 
Folded periplasmic proteins cross the outer membrane through the 
T2SS155. Outer membrane-anchored structures, such as amyloids and pili, 
are secreted and/or assembled by the curli secretion machinery or the 
chaperone–usher (CU) pathway, respectively155. Some extracellular 
proteins use either a complex of porins (for example, YebF)160 or 
outer-membrane vesicles (OMVs)161 to reach the extracellular milieu.
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Exportome
The non-cytoplasmic portion of 
the bacterial proteome that is 
integrated into the plasma 
membrane or exported 
beyond the plasma membrane 
(that is, to the periplasm, outer 
membrane, extra-cellular 
milieu or a host cell).

Sortases
Cysteine transpeptidases, 
found mainly in Gram-positive 
bacteria, that recognize 
carboxy-terminal signals (cell 
wall sorting signals) with an 
LPXTG motif on their substrate 
proteins (surface proteins), 
cleave them at the threonyl 
residue of the motif and then 
attach them on the cell surface.

Pre-proteins
Exported proteins that are 
synthesized as pre-forms,  
that is, containing an 
amino-terminal signal peptide 
(also known as a signal 
sequence or leader peptide) 
extension that is proteolytically 
removed during, or after, 
export.

Chaperones
Proteins (ATP-dependent or 
independent) that assist in 
de novo protein folding or 
refolding, or disaggregation or 
the prevention of aggregation 
under stress or physiological 
conditions.

Proton motive force
(PMF). The potential energy 
stored in the plasma 
membrane, due to proton and 
voltage gradients across the 
membrane, that becomes 
liberated during proton 
movement through the 
membrane plane towards 
achieving electrochemical 
equilibrium.

Holdase
A chaperone that does not 
promote protein folding, but 
‘holds’ onto substrates to 
prevent misfolding and/or 
aggregation.

efficiently translocate hundreds of others? How is the 
Sec translocase activated and selectively opened for lat-
eral or vectorial translocation? And how does SecA drive 
successive translocation steps?

Recent scientific breakthroughs have provided mech-
anistic insights into Sec-dependent protein export and 
have answered some of these questions. Technological 
advances have revealed the intermolecular interactions 
between pre-proteins and their binding partners22–25. 
Structural (Supplementary information S3 (table)) and 
kinetic studies of ribosome–nascent chain complex 
(RNC)–SRP–FtsY have defined the ‘checkpoints’ that 
mediate selective co-translational targeting26–31.

Moreover, several structures of SecYEG in complex 
with RNCs, SecA, pre-proteins, peptide mimics or SecA–
pre-proteins (Supplementary information S3 (table)), 
together with many computational, biochemical and 
biophysical studies, have improved our understanding 
of the dynamics of the translocase that govern protein 
export. In addition, these reports suggest that the confor-
mation of SecYEG, and thus its function, is regulated by 
distinct interaction partners32–40. In parallel, SecA uses its 
quaternary structure dynamics41 to carry out its distinct  
roles during post-translational translocation23,41–46.

In this Review, we discuss our current understand-
ing of the consecutive steps of the Sec pathway: sorting 
and targeting, translocation and release for both co- 
translational and post-translational targeting mech-
anisms. We focus on the architecture and dynamics 
of SecYEG and its regulation by ribosomes and SecA. 
Moreover, we present current models of the mechanisms 
and energetics of co-translational membrane integration 
and SecA-dependent post-translational translocation. 
Independent integration of plasma membrane proteins 
through YidC (BOX 1) is not discussed (recently reviewed 
in REF. 20). Most of the findings that are discussed in this 
Review were obtained through studies on E. coli, as it is the 
best-characterized bacterial system. Nevertheless, thou-
sands of bacterial genomes and biochemical data suggest 
that most features of the Sec pathway that have been iden-
tified in E. coli are universal to bacteria. Features that are 
unique to some bacteria are discussed where appropriate.

Pre-protein sorting and targeting
As signal peptides and mature domains emerge from a 
ribosome, secretory pre-protein or plasma membrane 
protein nascent chains are recognized by distinct pro-
tein factors (FIG. 1c, step 1). These dynamic interactions 
and inherent structural features of the signal peptide and 
mature domain facilitate cytoplasmic sorting, influence 
the extent of protein folding and the targeting route 
for export.

During co-translational targeting, highly hydropho-
bic signal peptides or N-terminal transmembrane helices 
(TMHs) of plasma membrane proteins are recognized 
by the SRP at the ribosomal exit tunnel11, which deliv-
ers the RNC to SecYEG or SecYEG–YidC11,20 (FIG. 1c, 
step 1). The SRP membrane-associating receptor, FtsY, 
directly interacts with lipids47 and SecYEG48, which leads 
to the insertion of the nascent chain into the entrance of  
the SecY channel28,49.

During post-translational targeting, ribosome-docked 
chaperones, such as trigger factor22,50,51 or ribosome- 
bound SecA14,15, may interact with emerging secretory 
polypeptide chains2,22. Alternatively, exported pro-
teins leave the ribosome and may bind to cytoplasmic 
chaperones that have holdase activity, such as SecB52, 
that maintain pre-proteins in an unfolded and soluble 
state24,53,54. However, neither trigger factor nor SecB  
are essential55–57 and the extent to which these factors are 
involved in the Sec-dependent protein export pathway 
remains to be determined. Moreover, in the absence of 
chaperones, pre-proteins remain unfolded and translo-
cation-competent in vitro, owing to their signal peptides 
that delay the folding of their mature domains58 and/or 
to inherent properties of the mature domain23. Whether 
they are released from the ribosome alone or chaper-
oned, unfolded pre-proteins are subsequently deliv-
ered to cytoplasmically diffusing or SecYEG-bound  
SecA12,13 (FIG. 1c, step 2).

Signal peptides. Although signal peptides share  
conserved physicochemical properties, they differ in 
sequence10 (FIG. 1d, left). The hydrophobic helical H 
region of signal peptides could form already at the ribo-
somal exit tunnel26 and can engage either SecA42 (FIG. 1d), 
SRP11,59,60 or trigger factor24 through hydrophobic  
and electrostatic interactions. Increased hydrophobic-
ity in the signal peptide favours association with SRP  
and co-translational routing11. Owing to the low 
SRP:ribosome intracellular ratio (Supplementary  
information S1 (table)), signal peptide recognition has 
to occur rapdily61,62. Non-optimal codons that are found 
in pre-protein-encoding regions63,64, mainly in signal 
peptides65, might increase the efficiency of this step by 
delaying translation and folding66. The arrest of transla-
tional elongation63, the kinetic enhancement of nascent 
pre-protein recognition64 and the prevention of misfold-
ing67 by avoiding fast aberrant folding may generally  
contribute to membrane targeting.

Pre-proteins that contain signal peptides with lower 
hydrophobicity evade SRP surveillance and instead 
may bind to ribosome-bound trigger factor68 or SecA14 
(FIG. 1d) through their signal peptides23,24,42 and/or their 
mature domains (see below). However, these dynamic 
processes do not adhere to strict hydrophobicity 
thresholds and are affected by the concentrations of 
the ribosome-interacting factors. Examples of escape 
from SRP69,70 or unexpected SRP recruitment on nas-
cent chains that lack signal peptides (or TMHs)71 
have been reported, and pre-proteins that preferen-
tially bind to SRP were shown to also use SecA72 in an 
unknown manner.

Mature domains. The ribosomal exit tunnel is a nar-
row, aqueous ante-chamber that enables the initiation 
of folding of cytoplasmic and transmembrane nascent 
chains73 prior to complete folding, which occurs after 
ribosomal release74. Co-translationally exported proteins 
that are SRP-dependent remain protected from exposure 
to water and avoid premature folding or aggregation69, 
as the nascent chain is released inside the SecY channel.
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By contrast, post-translationally exported proteins 
face a major challenge in maintaining their mature 
domains in an unfolded and translocation-competent 
state during ribosome–membrane trafficking2,23. Three 
major factors have been implicated in the maintenance of 
this state: signal peptides delay the folding of fast-folding 
mature domains, such as those of maltose-binding pro-
tein (MBP)58; the formation of a complex that consists of 
the ribosome-released mature domains with either trig-
ger factor24,75, SecA14, specialized chaperones (for exam-
ple, SecB25,76; see below) or house-keeping chaperones51, 
may stabilize the unfolded state; and protein folding 
might be prevented in the reducing environment of the 
cytoplasm, as some structural properties of the mature 
domains are only acquired in the oxidative environment 
of the periplasm (for example, disulfides)23.

Some unfolded mature domains can be sorted and 
targeted in vivo or in vitro in the absence of signal pep-
tides23,77 or chaperones23, and they were shown to bind 
to SecA with high affinity (Supplementary information 
S1 (table)) at sites that differ from the binding sites of 
signal peptides23. Therefore, unfolded mature domains 
may contain currently unknown signals that may confer 
selectivity in chaperone recruitment25 and SecA-mediated 
targeting23.

Signal recognition particle. Bacterial SRP consists of Ffh 
(an SRP54 homologue) and a hairpin-structured 4.5S 
RNA26 (FIG. 2a, bottom). Ffh contains a helical N-terminal 
domain, a GTPase domain and a methionine- 
rich domain, and can functionally replace its eukaryotic 
homologue78 but lacks the ability to arrest trans lation. 
The N-terminal and GTPase domains of Ffh dock onto 
the L23 and L29 proteins of empty, or translating, ribo-
somes, whereas the methionine-rich domain inserts into 
the exit tunnel26 for signal peptide recognition27,79 (FIG. 2a, 
middle). This high-affinity complex (Supplementary 
information S1 (table)) is kinetically stabilized only by 
emerging substrates that have appropriately hydrophobic 
signal peptides or TMHs29,49,62, and it enables the sub- 
stoichiometric SRP to rapidly scan several ribosomal exit 
tunnels. Substrate specificity is further regulated through 
the recruitment of FtsY. FtsY also contains N-terminal 
and GTPase domains, and FtsY in E. coli additionally 
has an acidic N-terminal extension. In the presence 
of TMHs or signal peptides that have a preference for 
SRP, stable RNC–SRP–FtsY intermediates are formed 
that are targeted to the plasma membrane29,31,49 (FIG. 2a, 
top). Ffh and FtsY interact through their N-terminal 
and GTPase domains, and this association is mediated 
by the 4.5S RNA and regulated by GTP hydrolysis26,28. 
Weak complexes that comprise SRP, FtsY and exported 
nascent chains that have ‘incompatible’ signal peptides 
for co-translational export (that is, signal peptides with 
low hydrophobicity or with high hydrophobicity but 
extended N-terminal regions), or cytoplasmic nascent 
chains that randomly interact with SRP at early recog-
nition steps, may dissociate in the cytoplasm29,49 fol-
lowing premature GTP hydrolysis29. By contrast, the 
stable RNC–SRP–FtsY super-assembly relocates to the 
membrane-bound translocase. The binding of lipids 

by FtsY allosterically weakens the affinity of SRP for 
the ribosome49,80. SecYEG triggers GTP hydrolysis and 
outcompetes SRP for ribosomal binding28,49, RNCs are 
unloaded into the channel and SRP is recycled to scan 
other ribosomes.

Trigger factor. Trigger factor is an ATP-independent 
chaperone (FIG.  2b, bottom) that is ubiquitously 
expressed in bacteria51, but is dispensable for protein 
export and viability56,57,81. The cytoplasmic apoprotein is 
dimeric, but trigger factor binds to ribosomes as a mon-
omer50,68. As its N-terminal domain docks onto L23, the 
entire body of the trigger factor protein is exposed to the 
exit tunnel (FIG. 2b, middle) and can engage in hydro-
phobic and/or polar interactions with nascent poly-
peptide chains50,51,68,82. Some of the cytoplasmic proteins 
that are recognized by trigger factor are then ushered to 
folding machines, such as the DnaK–DnaJ and GroEL–
GroES complexes51,82 (FIG. 1a, step 1). Owing to its high 
intracellular concentration and high ribosomal affinity 
(Supplementary information S1 (table)) trigger factor is 
probably the most prominent ribosome-bound chaper-
one that can outcompete the binding of dimeric SecA15, 
but not SRP, to the ribosome30. Through ‘co-habitation’, 
SRP and trigger factor can screen nascent substrates 
simultaneously30,61. The binding of trigger factor to  
specific signals that are present on a nascent polypeptide 
chain30, which typically comprise extended hydropho-
bic patches with flanking positively charged residues83, 
weakens RNC–SRP interactions and RNC–SRP–FtsY 
membrane-targeting complexes30,61. Thus, ‘incompatible’ 
substrates, such as secretory pre-proteins that are tar-
geted through the post-translational route or cytoplas-
mic proteins, are eliminated from the co-translational SRP 
pathway. Trigger factor recognizes both signal peptides24 
and mature domains, and commonly binds to nascent 
polypeptide chains that consist of more than 100 amino 
acid residues22. Binding occurs at several sites in trigger 
factor that are located on its prolyl isomerase (PPIase), 
N-terminal and carboxy-terminal domains24,68 (FIG. 2b, 
top). Persistent binding during translational elongation50 
may load several trigger factor chaperones onto a single 
nascent chain24. Owing to dynamic, multivalent inter-
actions with aggregation-prone regions24,82 trigger factor 
may contribute to pre-protein sorting22,84,85 and targeting 
by maintaining pre-proteins in soluble, non-native and 
translocation-competent states24,51,75,82,85. It remains to 
be determined whether, or how, trigger factor can relay 
nascent polypeptide chains to SecB or SecA.

SecB. SecB is a non-essential, ATP-independent holdase52 
that assembles into a dimer of dimers (SecB4)86,87 (FIG. 2c, 
bottom). Although limited to proteobacteria2, secB-like 
genes52 exist in other taxonomic groups. E. coli uses SecB 
for the export of only approximately 4% of its secretome12, 
but it is a paradigm of secretion-specific chaperones.

SecB binds to completely or partially synthesized 
nascent pre-proteins2 mainly through hydrophobic con-
tacts88,89, spanning a wide area of its surface89,90 (FIG. 2c, 
middle). NMR-derived solution structures of SecB 
in complex with two pre-proteins revealed that SecB4 
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slightly re-arranges its structure to extend its hydropho-
bic surfaces and accommodate longer pre-proteins89. 
Binding is of high affinity (Supplementary informa-
tion S1 (table)), but broad specificity90,91, that may 
include signal peptides89,92, and may overlap with that 
of trigger factor51. SecB binds to pre-proteins that lack 
tertiary structure25,53,76,89, but that may have secondary 
structure25,53, and delays or prevents their compaction 
or aggregation. The prevention or delay of folding by 
SecB is probably determined by the rates of association 
of a pre-protein with SecB and of intrinsic folding of the 
pre-protein76,89, and the stability of the SecB–substrate 
complex88,89.

SecB relays pre-proteins to cytoplasmic or SecYEG-
bound SecA (FIG. 1c) through high-affinity interactions 
between SecA and SecB13,93 (Supplementary informa-
tion S1 (table)) that are enhanced by pre-proteins13. 
SecA2–SecB4 complexes share several contact sites94,95: 
a flat SecB β-sheet and its C terminus bind to the zinc- 
containing C-terminal tail (FIG. 2c, top) and N terminus of 

SecA, respectively. This asymmetric interaction may facil-
itate pre-protein release onto SecA94. Crosslinking96 and  
electron microscopy97 methods have led to the sug-
gestion of possible SecA–SecB orientations; however, 
high-resolution structures are still lacking.

SecA. The translocase motor SecA is essential and con-
served in bacteria. Its nucleotide-binding domain (NBD; 
also known as NBD1) and the intra-molecular regulator 
of ATPase 2 (IRA2; also known as NBD2) sandwich a sin-
gle nucleotide and form a superfamily 2 helicase motor98 
(FIG. 2d, bottom). The pre-protein-binding domain 
(PBD), which is rooted in the NBD through a stem, 
contributes to pre-protein recognition. The C-terminal 
domain, which is fused to IRA2, docks SecA onto 
SecY37,42,99,100. C-terminal domain regions include the hel-
ical scaffold domain (HSD), which physically intercon-
nects all SecA domains, the intra-molecular switch IRA1 
(REF. 101) (or ‘two-helix finger’), the helical wing domain 
(HWD) and the C-terminal tail that folds onto the stem.
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SecA exists in cytoplasmic (free or ribosome- 
bound14,15) and SecYEG-bound states41, all of which are 
capable of binding to pre-proteins14,23,42,102. Cytoplasmic 
SecA is dimeric (Supplementary information S1 (table)) 
and binds to the ribosomal L23 protein as a mono-
mer14,15 (FIG. 2d, middle) or as an elongated dimer15, 
with the second protomer interfacing with L22 and L24. 
Cryo-electron microscopy (cryo-EM) superpositions  
suggest that monomeric SecA might scan nascent chains  
simultaneously with trigger factor, but not with SRP15.

SecA promiscuously recognizes signal peptides 
and mature domains with high affinity through two 
distinct sites23,42. Its elongated, hydrophobic signal 

peptide-binding groove accommodates H regions of  
signal peptides of different lengths and electrostatically 
traps their positively charged N-terminal regions through 
acidic residues42 (FIG. 1d, right; red). The C-terminal tail 
of SecA partly caps the groove42. How SecA recognizes 
more than 500 unfolded mature domains that have  
dissimilar sequence, size, charge, structure or hydro-
phobicity, and where, remains elusive. Suggested bind-
ing sites for mature domains include the PBD100 and a 
PBD–IRA2 clamp99,102 (FIG. 2d, top).

A mechanism for the promiscuity and selectivity 
of SecA–pre-protein recognition emerges: the con-
served biophysical properties of signal peptides ensure 
their docking onto the same groove of SecA42. Acidic  
residues at the entrance of this groove in SecA42 might 
prevent unspecific hydrophobic interactions with 
non-Sec-dependent exported or cytoplasmic proteins. 
Mature domains make contact with SecA23, possibly 
in a less specific manner, to stabilize signal-peptide- 
mature domain–SecA complexes. The C-terminal tail 
partially occludes and auto-inhibits SecA from engag-
ing unspecific substrates in its signal-peptide-binding 
groove42, as indicated by the finding that the binding 
affinity of signal peptides is enhanced in the absence 
of the SecA C-terminal tail42. Some signal peptides 
may displace the C-terminal tail, whereas others may 
require SecB for higher-affinity binding to SecA42. 
SecB binds to the C-terminal tail93,95 and may release 
it from the signal peptide-binding groove of SecA42. 
Therefore, the SecA C-terminal tail provides a substrate 
‘proof-reading’ mechanism.

Architecture and dynamics of SecYEG
Both co-translational and post-translational targeting 
pathways converge at SecYEG. SecYEG is a unique 
channel: it combines both a vectorial and a lateral 
opening. In addition, its conformation is regulated by 
ribosomes, SecA and pre-proteins, and it maintains the 
membrane permeability barrier while markedly dilating 
to translocate elongated polymers103.

Architecture of the SecYEG channel. SecY comprises 
10 TMHs that transverse the plasma membrane and 
form the channel pore4 (FIG. 3a). TMHs 1–5 juxtapose 
TMHs 6–10 around a hydrophilic pre-protein passage 
and they are linked by a periplasmic hinge. Six bulky 
hydrophobic residues form a passage-constricting 
pore ring in the centre of the channel (FIG. 3a, left; cyan 
spheres). In its characteristic hourglass-shaped resting 
state (FIG. 3a, left), the ring restricts channel opening 
to 5 Å and its periplasmic funnel is sealed by a helical 
plug. The ring and plug may act as channel gates103,104. 
Parallel to the cytoplasmic funnel, the loose junc-
tion of TMH 2 and TMH 3 with TMH 7 and TMH 8  
creates a lipid-facing lateral gate (FIG. 3a, bottom). SecE 
engages SecY externally, diametrically opposite to the 
lateral gate, and stabilizes the conformation of SecY. 
The non-essential, poorly conserved SecG makes tight 
hydrophobic contacts with TMH 3 and TMH 4 of SecY 
(FIG. 3a), and its cytoplasmic loop seals the cis side of the 
SecY cytoplasmic funnel105.

Figure 2 | Structures of the sorting and targeting factors. The signal recognition 
particle (SRP), the trigger factor dimer (TF2), tetrameric SecB4 chaperones and a protomer 
of dimeric SecA2 are depicted in the free (bottom), sorting (middle) and targeting (top) 
states. a | Bacterial SRP consists of Ffh (which comprises a helical amino-terminal domain, 
a GTPase domain and a methionine-rich domain) and a hairpin-structured 4.5S RNA 
(bottom; RCSB Protein Data Bank (PDB) entry 2XXA). Bacterial SRP anchors onto the L23 
and L29 ribosomal proteins through its N-terminal domain and GTPase domain, and 
inserts its methionine-rich domain into the ribosomal exit tunnel26 for the recognition  
of signal peptides or transmembrane helices (TMHs) in emerging nascent chains27,79 
(middle; PDB entry 5GAF). SRP binds to its receptor FtsY and the formed stable 
ribosome–nascent chain complex (RNC)–SRP–FtsY intermediates are targeted to the 
membrane-bound translocase29,49 (top; PDB entry 5GAD). Ffh and FtsY interact through 
their N-terminal and GTPase domains, and this association is mediated by the 4.5S RNA 
and regulated by GTP hydrolysis26,28. RNCs are transported to the SecYEG channel  
or to the membrane protein insertase YidC11 (light orange). b | Trigger factor is an 
ATP-independent chaperone (bottom; letters represent trigger factor monomers; PDB 
entry 1T11). Although the cytoplasmic apoprotein is dimeric, trigger factor binds to 
ribosomes as a monomer through its N-terminal domain68 (middle; PDB entries 2VRH and 
1W2B; Supplementary information S3 (table)), which docks onto L23 near the ribosomal 
exit tunnel. Emerging signal peptides and mature domains can interact with the entire 
body of trigger factor through hydrophobic and/or polar interactions50,68,82. Binding 
occurs at several sites on trigger factor that are located on its prolyl isomerase (PPIase), 
N-terminal and carboxy-terminal domains24,68 (top; PDB entries 2MLX, 2MLY and 2MLZ). 
Persistent binding during translational elongation50 may load several trigger factor 
proteins onto on a single nascent chain24. Trigger factor detaches from the ribosome and 
may relay pre-proteins to SecB or SecA. c | SecB is a non-essential, ATP-independent 
holdase52 that assembles into high affinity tetramers (SecB4; bottom, letters represent 
individual SecB monomers; PDB entry 1QYN)86,87. SecB4 uses a large area of its surface89,90 
to bind to completely or partially synthesized nascent pre-proteins (middle; PDB entry 
5JTL) mainly through hydrophobic interactions88,89. SecB delivers pre-proteins to 
cytoplasmic, or SecYEG-bound, SecA13,93. Among several SecA2–SecB4 contacts94,95, a flat 
SecB β-sheet binds to the zinc-containing C-terminal tail (C-tail) of SecA (top; PDB entry 
1OZB) and the C terminus of SecB contacts the N terminus of SecA (not shown). d | SecA 
acts as a pre-protein-targeting factor and receptor, and a translocase motor. As a motor, 
it belongs to the superfamily 2 helicase, owing to the nucleotide-binding domain (NBD) 
and the intra-molecular regulator of ATPase 2 (IRA2; bottom; PDB entries 1M6N and 
2VDA; Supplementary information S3 (table)) that sandwich a single nucleotide98  
(yellow spheres represent ATP). The pre-protein-binding domain (PBD), rooted in the 
NBD through a stem, and the C-terminal domain, fused to IRA2, facilitate the recognition 
of the polypeptide and binding to SecY37,42,99,100. C-terminal domain regions include the 
helical scaffold domain (HSD), which physically interconnects all SecA domains, the 
intra-molecular switch IRA1 (REF. 101) (or ‘two-helix finger’), the helical wing domain 
(HWD) and the C-tail that folds onto the stem. SecA domains are indicated on one SecA2 
protomer. The dimeric cytoplasmic SecA may dissociate into monomers following 
binding to ribosomes for pre-protein recognition, with a single SecA monomer docking 
onto L23 (REFS 14,15) (middle; EBI Electron Microscopy Data Bank entry 2565 and PDB 
entry 1M74), or may adopt a ribosome-bound elongated dimeric state15 (not shown), with 
the second SecA2 protomer contacting L22 and L24 (not shown). SecA promiscuously 
recognizes both signal peptides and mature domains (top; PDB entries 3JV2 and 2VDA) 
through two distinct sites23. A tripeptide (orange) indicates a potential mature 
domain-binding region on SecA99.
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The functional oligomeric state of SecYEG remains 
elusive. Detergent-solubilized complexes range from 
monomers4,37 to higher oligomers106–108, which include 
back-to-back106,107 and front-to-front108 SecYEG dimers. 
Both arrangements were also captured by in  vivo 
crosslinking109. The back-to-back model provides facile 
lateral escape of membrane proteins through either one 
of its lipid-facing lateral gates (see below).

A single SecYEG complex is sufficient for SecA 
binding, pre-protein engagement110,111 and translo-
cation39,112,113. Moreover, an inserted signal peptide 
localizes to only one of the two lateral gates of a SecYEG 
dimer106 and the structure of SecYEG with a single 
trapped pre-protein has been reported36,46. Dimers may 
enhance translocation efficiency110. The association of 
SecYEG complexes may indirectly stabilize the translo-
case, possibly through the binding of SecA, or facilitate 
its activation110,111,113.

Regulation of SecYEG conformation by ribosomes and 
SecA. Translocation of a plasma membrane protein or 
a secretory pre-protein requires the SecYEG pore to 
switch from its closed, energetically favoured ground 
state114 to an open state. Molecular dynamics simulations 
have estimated a free-energy penalty of 20 kcal mol–1 for 
translocation or membrane integration through SecYEG 
without external destabilizing interactions115. Both ribo-
somes and SecA interact with the highly dynamic116, 
cytoplasmic protrusions of SecY37,117; that is, elongated 
helices 6, 7, 8 and 9, that extend into the membrane plane 
(FIG. 3b,c) and facilitate pore opening34,114,118. Through 
these allosteric ‘handles’ (REFS 33,118), ribosomes or SecA 
induce long-range conformational changes in the plug, 
ring and lateral gate domains of SecYEG34,37,117 (FIG. 3b,c) 
and stabilize the high energy open state (FIG. 3d,e). The 
effects can be mimicked by protein localization (prl) con-
formational mutations (for example, prlA for SecY, prlG 
for SecE and prlD for SecA119) that enable signal peptide- 
independent translocation, possibly by destabilizing the 
closed state120,121 or by strategically placed crosslinks33 
(for example, the E. coli SecY-I284C-T404C double 
mutant on a cysteine-free template; the introduced  
cysteinyl residues crosslink TMHs 7–10 of SecY33).

For a compendium of channel dynamics, we integrated 
conformational snapshots of archaeal, eukaryotic and bac-
terial SecYEG homologues, based on the high structural 
and functional evolutionary conservation of the channel.

Ribosomes bind to SecYEG with high affinity 
(Supplementary information S1 (table)) but exert limited 
influence on channel conformation. Ribosomes anchor 
near SecY loop 6–7 and loop 8–9, mainly through the 
universally conserved ribosomal L23 and L29 proteins122 
that line the ribosomal peptide exit, creating a continu-
ous conduit with the pore117 (FIG. 3b). Loop 6–7 and loop 
8–9 shift inwards towards the channel (FIG. 3d; arrows 
indicate motions from the closed (grey) to the ribosome- 
bound (coloured) state). Subsequently, the lateral gate 
slightly opens through the outward displacement of 
TMH 2 and TMH 3 (REF. 117) (FIG. 3d). This disrupts a con-
served hydrogen bond network (termed the ‘polar cluster’, 
which is located between TMH 2, TMH 3 and TMH 7) 
that stabilizes the lateral gate closed state36,38 (FIG. 3b). 
The slightly opened lateral gate enables further opening 
for the intercalation of the hydrophobic nascent chain, 
while weakening the interactions between the non-polar  
patch of the plug and the polar cluster of the lateral gate38. 
Thus, the seemingly unaltered plug117 (compare FIG. 3d to 
FIG. 3a, left) might become subtly destabilized, but not fully 
detached, before plasma membrane proteins or secre-
tory pre-proteins bind to SecYEG38,40. Premature plug 
displacement may alter the electrostatic field inside the  
pore and affect the channel-engaged plasma membrane  
protein or secretory pre-protein orientation123.

In contrast to the ribosome that recognizes SecYEG 
in transient interactions, SecA is a dedicated, specialized 
subunit of the translocase holoenzyme, and, together, 
they form an allosteric ensemble13,19,41. SecA exhibits 
remarkable dynamics and flexibility12. Its domains show 
conformational plasticity and/or move relative to one 
another43,44,98,124–127, and these intra-protomeric interactions 

Figure 3 | Architecture and dynamics of the Sec translocase components. 
a | Top and side views of a resting SecYEG homologue (SecYEβ from Methanococcus 
jannaschii; RCSB Protein Data Bank (PDB) entry 1RH5)4. In the ribbon representation 
(left panel) the two SecY halves (transmembrane helices (TMHs) 1–5 are shown in yellow 
and TMHs 6–10 are shown in light yellow), which are connected by a periplasmic hinge, 
are surrounded by SecE (brown; its amphipathic helix is indicated) and SecG (light 
brown; MjSecβ). The periplasmic and cytoplasmic SecY funnels are indicated; the closed 
lateral gate (red), the plug (magenta) and pore ring (cyan spheres; residues from TMH 2, 
TMH 5, TMH 7 and TMH 10), restrict channel permeability. In the surface representation 
(right) the laterally (side view) and vectorially (top view) closed channel are shown. 
b | Ribosomes bind to SecYEG near SecY loop 6–7 and loop 8–9, mainly through the 
universally conserved ribosomal L23 and L29 proteins (uL23 and uL29; the appended  
‘u’ indicates that these proteins are universal) that line the ribosomal peptide exit, 
creating a continuous conduit with the SecY pore117. This interaction slightly alters the 
conformation of SecYEG, as observed in SEC61, the SecYEG eukaryotic homologue 
(colours match those used in part a; PDB entry 3J7Q), that is ‘primed’ by a non-translating 
ribosome117 (grey; with the exception of SEC61-binding proteins, which are in light blue. 
Ribosomal proteins that are present only in eukaryotes (eL19 and eL39; ‘e’ indicates 
eukaryotic) and also interact with SEC61 are indicated as well). In this state, the network 
of hydrogen bonds between TMH 2, TMH 3 and TMH 7 of SecY, termed the ‘polar 
cluster’, that stabilizes the closed lateral gate is disrupted. c | SecA associates with 
SecYEG to form the translocase holoenzyme. The lateral gate of SecYEG (PDB entry 
3DIN) complexed to one SecA–ATP analogue is slightly open (approximately 5 Å)37. 
d | A diagrammatic model of ribosome-bound SEC61 (ribosome not shown). Only the 
important channel elements are indicated (top view); the passage-constricting pore 
ring (residues from TMH 2, TMH 5, TMH 7 and TMH 10), the periplasmic seal termed the 
‘plug’, and the lateral gate that is proposed as an egress towards the plasma membrane, 
control channel opening. In the side view (ribbon representation) arrows indicate 
important motions from the closed (grey; PDB entry 1RH5) to the ribosome-bound 
(superimposed colours; PDB entry 3J7Q) state: the interaction between the ribosome 
and loops 6–7 and 8–9 of SecY, shifts TMH 2 and TMH 3 of SecY outwards, which 
disrupts the ‘polar cluster’ between TMH 2, TMH 3 and TMH 7 of the lateral gate. 
e | The SecA–ATP-bound SecYEG state37 (PDB entry 3DIN; SecA is not indicated). 
The C-terminal half of SecY rotates outwards, which destabilizes the pore ring. The  
lateral gate slightly opens by outward displacement of TMH 7 of SecY. TMH 9 is 
also substantially displaced and forces the SecE amphipathic helix outwards to 
accommodate the more relaxed SecY conformation. The plug moves from the pore 
ring towards TMH 7 of SecY, but it still provides pore sealing. f | Cytoplasmic SecA forms 
high-affinity interconverting homodimers (PDB entries 1M6N (left) and 1NL3 (right)). 
The two SecA2 quaternary structures41 (ribbon structure indicates the front; surface 
structure indicates the back protomers) share the same dimerization elements, but 
different inter-protomer orientations41 (see diagrammatic representation). Numbers 
that are superimposed on, or next to, helices indicate the respective TMH. HSD, helical 
scaffold domain; HWD, helical wing domain; IRA2, intra-molecular regulator of 
ATPase 2; NBD, nucleotide-binding domain; PBD, pre-protein-binding domain.

◀

R E V I E W S

NATURE REVIEWS | MICROBIOLOGY  VOLUME 15 | JANUARY 2017 | 29

©
 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.

http://www.rcsb.org/pdb/explore/explore.do?structureId=1RH5
http://www.rcsb.org/pdb/explore/explore.do?structureId=3J7Q
http://www.rcsb.org/pdb/explore/explore.do?structureId=3DIN
http://www.rcsb.org/pdb/explore/explore.do?structureId=1RH5
http://www.rcsb.org/pdb/explore/explore.do?structureId=3J7Q
http://www.rcsb.org/pdb/explore/explore.do?structureId=3DIN
http://www.rcsb.org/pdb/explore/explore.do?structureId=1M6N
http://www.rcsb.org/pdb/explore/explore.do?structureId=1NL3


are further influenced by its quaternary state. Cytoplasmic 
SecA forms high-affinity interconverting homodi-
mers41,128 (for example, compare FIG. 3f, left98 to right129). 
The dynamics of SecA are regulated by pre-proteins, 
nucleotides43,44,98,124–127, SecYEG, lipids and chaperones12 
to exert its function as a substrate receptor, channel mod-
ulator, loading pump and processive ATPase motor23,41. 
Nucleotide cycling39,43,98,130,131 in the helicase motor44 alters 
its conformational and quaternary41 transitions, and these, 
in turn, affect the conformations of the SecYEG channel 
and the bound pre-proteins.

The functional quaternary states of SecA when 
bound to SecYEG are a matter of debate; monomeric132 
or dimeric32 states and equilibria are shifted either way 
by ligand-binding12 or buffer conditions (for a detailed 
discussion see REF. 133). A recent study bridged the appar-
ent controversies, revealing both dimers and monomers 
as true and essential intermediates of translocation- 
engaged SecA41. SecA binds to SecYEG as an asymmetric  
dimer through one protomer and acquires at least three 
distinct subsequent quaternary conformers, each of 
which has a unique catalytic role prior to monomeriza-
tion41. The structure of Sec(YEG)2–SecA2 is elusive. The 
only available high-resolution insight comes from deter-
gent-solubilized, monomeric SecYEG–SecA–ADP-BeFx 
(BeFx: beryllium fluoride ion; FIG. 3c,e) and is suggestive 
of the conformational influence of the SecA monomer 
on the channel in an ATP-pre-hydrolysis state37. In this 
state, TMH 7 of SecY is displaced (FIG. 3e) and the lateral 
gate stays slightly open (~5 Å) (FIG. 3c). In parallel, the 
C-terminal SecY TMHs rotate outwards (FIG. 3e), which 
causes slight destabilization of the pore ring. The sub-
stantial shift of TMH 9 (FIG. 3e) is relayed and outwardly 
displaces the SecE amphipathic helix (FIG. 3e, right arrow). 
The plug moves from the ring to TMH 7 (FIG. 3e), but still 
seals the pore (FIG. 3e). Fluorescence and single-molecule 
fluorescence resonance energy transfer (FRET) analysis 
showed nucleotide-dependent plug relocation and lateral 
gate opening of SecA-bound SecYEG in the absence of 
pre-protein39,134,135.

Translocation and release
Co‑translational membrane integration. Co-translational 
integration of plasma membrane proteins is mediated by 
hydrophobic, helical, ~20-residue-long TMHs that are 
proposed to move through the lateral gate4,40.

During the early stages of nascent chain engagement, 
exported TMHs potentially bind to a hydrophobic open-
ing at the cytoplasmic side of the lateral gate105 (FIG. 4a). 
Then, according to the ‘lateral gate egress’ model, TMHs 
of the nascent chain intercalate into the lateral gate by 
replacing interactions between TMH 2 and TMH 7 of 
SecY40 (FIG. 4b) and thermodynamically partition between 
lipids and the aqueous pore by sliding sideways through 
the open lateral gate136,137 (FIG. 4e). A wide-open lateral gate 
is stabilized only by peptides that are strongly hydropho-
bic34,115. The helicity of the TMHs from the nascent chain 
decreases the energy cost of partitioning138. Subsequent 
hydrophilic segments are occluded from lipids and 
remain inside the hydrophilic pore, inducing minor  
conformational changes to the lateral gate40,115 (FIG. 4c).

Structural and bioinformatics data suggest a model 
for SecYEG conformational changes during the insertion 
of TMHs. The pore ring may dilate in response to the 
incoming polypeptide, which leads to plug destabiliza-
tion139 (FIG. 4c), or in response to lateral gate opening106,139 
that is induced by the intercalation of the exported TMH 
(FIG. 4b). The latter notion is supported by studies that 
show the co-translational engagement of a periplasmic 
pre-protein36 (FIG. 4d), the signal peptide of which also 
intercalates in the lateral gate, which induces pore ring 
dilation (compare the pore ring in FIG. 4d with FIG. 4b,c). 
During the insertion of TMHs, pore dilation could be 
compensated by tighter interactions between the plug 
and residues from TMH 10 of SecY, close to the pore 
ring (compare the positions of the plug and TMH 10 
in FIG. 4b and FIG. 3a, left), to maintain the membrane 
permeability barrier40. The seemingly distinct responses 
of the channel to transmembrane nascent chains, 
hydrophilic nascent chains and secretory pre-proteins 
(FIG. 4b–d; Supplementary information S3 (table)) imply 
that engaged chains rearrange the three conformational 
regulators of the channel (that is, the plug, the ring and 
the lateral gate) on demand40. Thus, translocation swiftly 
switches between vectorial and lateral.

SecY exerts biphasic pulling forces on exported 
TMHs during channel insertion and membrane inte-
gration140. Single-spanning plasma membrane proteins 
that have strong helical propensity and hydrophobicity 
slide outwards rapidly137,140. The insertion of polyto-
pic plasma membrane proteins is more complicated. 
Several TMHs are retained temporarily in the dilated 
pore35. Neighbouring TMHs assist in the egress of mod-
erately hydrophobic preceding TMHs141. Insertion into 
lipids and sliding into the bilayer can be sequential or 
en bloc35.

When complexed with SecYEG, YidC (BOX 1) is typ-
ically located adjacent to the lateral gate and has a role 
in cooperative membrane integration8. SecA is condi-
tionally recruited co-translationally, whenever extended 
hydrophilic loops of plasma membrane proteins need 
to be translocated142. Cytoplasmic chaperones have 
also been hypothesized to stochastically ‘push’ nascent 
chains towards the channel through SecYEG–ribosome  
interface gaps122.

Phospholipid molecules that surround the trans-
locase can influence membrane protein insertion and 
folding. They function as chaperones for the folding of 
membrane protein and non-membrane protein domains 
and are important determinants of the topology of  
membrane proteins143.

Post‑translational translocation. SecA is a central 
player in this mode of export. The translocation process, 
although not yet fully resolved, can be summarized in 
a working model of sequential steps (FIG. 5a, steps 1–8).

In the first step, SecA2, which is assembled mainly 
through electrostatic inter-protomer contacts, docks 
stochastically onto SecYEG or (SecYEG)2 (REF. 41) by 
only one of its protomers and becomes asymmetric23. 
The SecYEG–SecA holoenzyme is assembled13,19 and 
ATP-turnover by SecA is slightly stimulated17,19.
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Next, a single pre-protein23 binds to the SecYEG-
bound protomer of the asymmetric SecA2 (REF. 41) with 
high affinity; signal peptide and mature domain dock 
onto distinct sites of SecA23. Even in (SecYEG)2 only one 
pore is active106,113.

In the third step, signal peptide binding alters the 
conformation of, elongates and loosens SecA2 (REF. 41). 
These changes are transmitted to the associated SecYEG 
complex39. The activation energy of the holoenzyme is 
decreased17,23,43. Structure-loosening prl mutations in 

Figure 4 | Conformational states of the SecYEG channel. a–d | The activation of SecYEG (Sec61 in eukaryotes; the two 
halves of the SecY homologue (transmembrane helices (TMHs) 1–5 are shown in yellow and TMHs 6–10 are shown in light 
yellow) are surrounded by the SecE (brown) and SecG (light brown) homologues) by secretory pre-protein or plasma 
membrane protein factors. The effects on channel conformation by a peptide mimic105 (part a; RCSB Protein Data Bank 
(PDB) entry 5CH4), an exported transmembrane nascent chain40 (part b; PDB entry 4CG6), a hydrophilic nascent chain40 
(part c; PDB entry 4CG5) and a periplasmic nascent chain36 (part d; PDB entry 3JC2) are shown from a side view (bottom; 
ribbon structures) or top view (top; diagrammatic representation). A peptide mimic (not indicated) binds to the cytosolic 
tip of the lateral gate, inducing a ‘crack’ on this side (part a, numbers that are superimposed on, or next to, helices indicate 
the respective TMH). This could comprise the first interaction site of signal peptides and exported TMHs with the lateral 
gate105. Then, TMHs40 and signal peptides36 (parts b,d; indicated in green) open and intercalate the lateral gate. Hydrophilic 
peptides are thermodynamically incapable of substantially opening the lateral gate40,115 (part c). The lateral gate opens the 
channel through rigid body movements. This may be compensated by tighter contacts between TMH 10 of SecY and the 
plug for lateral insertion of transmembrane proteins40 (part b). Slight pore opening and plug displacement by hydrophilic 
chains could be adequate for vectorial exit40 (part c). The pre-protein induces maximal channel opening36 (part d). 
e | The conformational state of SecYE during membrane integration of a polytopic plasma membrane protein162 (green; 
PDB entry 5ABB). In the rotated view (right structure) TMH 3 and TMH 4 of SecY were removed for visualization. The 
polytopic plasma membrane protein was captured outside of the SecY lateral gate (red). f | SecYE (as in part e) is shown 
engaged with a periplasmic secretory protein for post-translational translocation46 (PDB entry 5EUL). The signal peptide is 
depicted in green (ribbon representation) and the mature domain in orange (ribbon and spheres). The zoomed in top view 
(top inset of right structure) shows the pore ring surrounding the translocating pre-protein mature domain46.
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either of the SecA–SecYEG components can mimic this 
signal peptide-mediated ‘triggering’ effect41,77,119,120. For 
all of the downstream steps in the native Sec system, the 
physical presence of signal peptides is essential23.

ATP binding131 leads to a tight association between 
substantial parts of the SecA2 C-terminal domain and 
the channel, which was experimentally identified in 
protease-resistance studies144. Concomitantly, short 
pre-protein segments of 20–30 residues co-insert16.

The pre-protein stimulates ATP hydrolysis through 
the triggered SecA protein17,23,43 in a manner that is 
dependent on the second ‘regulator’ SecA protomer41. 
Poorly resolved but crucial steps ensue: the mature 
domain becomes ‘trapped’ in the SecA–SecYEG holo-
enzyme, although it is not deeply inserted into the 
channel16, and SecA monomerizes41,132. The SecA IRA1 
switch, which was previously buried in the dimer inter-
face (FIG. 3f), becomes exposed to, and associates with, 
the cytoplasmic funnel of SecY and potentially controls 
chain motions37,45,145. Increased IRA1 mobility may not 
be necessary for pre-protein ushering into the channel, 
as IRA1 immobilization at the edge of, and inside, the 
channel does not impede translocation146.

Next, signal peptides relocate to the lateral gate 
with their N terminus oriented towards the cytoplasm  
and their C terminus oriented towards the peri-
plasm46,106 by an unknown mechanism; mature domains 
become fully threaded along the pore and the plug is 
shifted outwards46 (FIG. 4f). The dilated pore ring forms a 
‘gasket’ around the partly extended translocating chain 
(FIG. 4f, top view); this may be the only tight contact 
between the mature domain and the channel46. An evi-
dent lateral gap of the pore ring (FIG. 4f, top view), due 
to the opened lateral gate, (FIG. 4f) may allow pre-protein 
exposure to lipids during translocation, which enables 
the sliding of the hydrophobic signal peptide outside 
of the lateral gate46. The translocating polypeptide 
loop fills the SecY periplasmic funnel (FIG. 4f), which 
was previously sealed by the plug in the idle channel 
state, and the C-terminal signal peptide segment later-
ally seals the channel from surrounding lipids46. Thus, 
the configuration of the translocating polypeptide as a 
loop inside of the channel and the hourglass shape of 
SecYEG may facilitate unimpeded passage through the 
channel while maintaining the membrane permeability 
barrier46.

Cycles of ATP binding and hydrolysis are essential to 
promote forward segmental translocation of the mature  
domain16,144. PMF promotes the translocation of  
mature domain segments that have been released from 
SecA following hydrolysis16. SecDF alone (FIG. 5c, right) 
or SecDF–YajC bound to SecYEG (FIG. 1c), may assist 
export in a PMF-dependent manner6,147.

Distinct models and/or their combination could 
explain the different roles of SecA and how it sus-
tains chain movement and translocation. In a ‘piston’ 
model, SecA acts as a monomeric processive motor37,41. 
Extended mature domains slide along a clamp that is 
formed by the PBD and IRA2 (REFS 102,125,126) (FIG. 5b; 
see also FIG. 2d, top). The tip of IRA1 (REF. 45) temporarily 
latches onto the chain and pushes it towards the pore145.  

ATP-binding and hydrolysis act as power strokes for 
the stepwise directional movement of pre-protein16, by 
pre-protein binding and release45,148 and SecA confor-
mational cycles144. Another possibility is that SecA acts 
as an ‘allosteric channel regulator’: SecA conformations 
control SecYEG through cycles of ATP hydrolysis. This 
would facilitate a Brownian ratchet mechanism: an 

Figure 5 | Model of Sec-dependent post-translational 
translocation and pre-protein maturation and release 
factors. a | Overview of post-translational translocation. 
One SecA2 protomer (dark blue) binds to the 
membrane-embedded SecYEG channel (one SecYEG is 
shown), and SecA2 becomes asymmetric (step 1)41. The 
signal peptide (green) and mature domain (orange) of a 
single pre-protein23 bind to the SecYEG-bound SecA 
protomer41 at distinct sites (step 2)23. Binding of the signal 
peptide conformationally alters SecA41, induces SecY 
lateral gate opening (not shown) and stabilizes a more 
open or loose SecYEG state39 (not shown), and triggers the 
ATPase activity of SecA (step 3)23. ATP–SecA144 and the 
pre-protein partially insert into the SecYEG channel 
(step 4)16. Pre-protein-stimulated ATP hydrolysis17,43, which 
is regulated by the second SecA2 protomer41 (light blue), 
traps the mature domain in the holoenzyme16 and SecA 
monomerizes (step 5)41,132. The pre-protein translocates, 
the process of which is powered by repeated cycles of ATP 
binding and hydrolysis16,144 and the proton motive force 
(PMF; step 6)16. SecA–ADP weakly binds to SecYEG45 
(step 7), before it dissociates144 (step 8), re-dimerizes in the 
cytoplasm and repeats the translocation cycle. Changes  
in the shape of SecA indicate conformational changes.  
b | The pre-protein-binding domain (PBD; magenta) of 
SecA (coloured ribbon representation superimposed  
on a transparent protomer surface) can swivel from a 
wide-open state (left; RCSB Protein Data Bank (PDB) entry 
1M6N) to an open state (middle; PDB entry 1TF5) or a 
closed state (right; PDB entry 3DIN)12. A clamp that is 
formed between the PBD and intra-molecular regulator  
of ATPase 2 (IRA2) may form a mature domain-sliding 
groove99,102. c | Structures of proteins that assist in 
pre-protein maturation and release: Signal peptidase I 
(SPase I (the Escherichia coli SPase I, LepB, is shown; PDB 
entry 3S04) and SPase II (the Pseudomonas aeruginosa 
SPase II, LspA, is shown; PDB entry 5DIR) cleave the  
signal peptides of secretory proteins or lipoproteins, 
respectively, during late steps or after the completion of 
translocation and release the mature domain at the trans 
side of the plasma membrane. SPase I contains a 
periplasmic domain and the catalytic Ser-Lys dyad of 
SPase I is indicated in red. SPase II is membrane-anchored 
and has a small periplasmic domain that contains the 
proposed conserved active site (dark purple) and two 
catalytic aspartic acid residues (red). The SecYEG- 
associated plasma-membrane-anchored periplasmic 
chaperone PpiD possibly assists in the release of secretory 
proteins. PpiD is anchored to the membrane by an 
unresolved α-helix near SecYEG151, and has three 
periplasmic domains (D); one of which has been resolved 
(PDB entry 2KGJ). The SecD–SecF (dark brown and light 
brown, respectively; PDB entry 3AQP) complex, which 
consists of 12 transmembrane helices (TMHs) and two 
periplasmic domains (P1 and P4), facilitates the 
translocation of the pre-protein through its P1 domain147. 
N terminus, amino terminus; Pi, inorganic phosphate. 
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engaged but freely moving polypeptide can undergo 
passive diffusion through the dilated channel without 
the requirement of energy45,135,149. Finally, acting as  
a ‘break’, SecA prevents chain back-sliding to enable 
PMF-driven or Brownian forward motion16,46.

Once most of the mature domain is translocated, 
SecA loses contact sites45 and hence ATPase stimula-
tion. SecA–ADP is now peripherally associated with the 
translocase16,144.

In the final step, the peripherally bound SecA–ADP 
protomer dissociates from SecYEG41,144, re-dimerizes in 
the cytoplasm and can repeat the translocation cycle.

Pre‑protein maturation and release. Signal pepti-
dases (SPase I for secretory proteins and SPase II for 
lipoproteins; FIG. 5c, left) cleave the signal peptide of a  
pre-protein that was fully, or at least 80%, translocated 
through SecYEG and release the mature domain at the 
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trans side of the plasma membrane21. Membrane-anchored 
SPase I has a trans serine protease domain that cleaves 
the signal peptide after a specific AXA motif 21,150. The 
SecYEG-associated plasma-membrane-anchored peri-
plasmic chaperone PpiD151 (FIG. 5c, middle) and SecDF147 
(right), possibly help in the release of secretory proteins152. 
Following release, proteins either become directed to 
post-plasma membrane secretion systems or fold in the 
cell envelope, extracellular milieu or target cell3 (BOX 1).

Conclusions and outlook
During the past three decades, several advances, includ-
ing numerous structures (Supplementary informa-
tion S3 (table)) and detailed biochemical and biophysical 
profiling of distinct steps, have elucidated basic aspects 
of the bacterial Sec pathway and revealed a sophisti-
cated process that is finely regulated by multiple factors. 
Despite substantial progress, several mechanistic aspects 

remain unresolved. How do exported proteins overcome 
cytoplasmic folding or aggregation and reach the trans-
locase? Do chaperone relay networks have a role? How 
are export-destined, unfolded proteins distinguished 
from cytoplasmic proteins? What are the structural 
SecA–SecYEG states during catalysis? How does SecA 
bind to mature domains? What is the route through 
the body of SecA that pre-proteins follow to enter the 
channel? What is the role of PMF in translocation? The 
complexity and dynamic nature of these events require 
sensitive and dynamic approaches for their elucidation. 
Single-molecule studies, high-resolution structures of 
the various complexes and methods that monitor con-
formational dynamics should be used. Elucidating the 
mechanisms of protein trafficking in bacteria will benefit 
the development of biopharmaceuticals and antibiotics 
and provide insight into this process in higher organisms 
during physiological and disease states.
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