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Abstract
Mitochondria are essential organelles of eukaryotic cells. They consist of hundreds of different proteins that exhibit crucial 
activities in respiration, catabolic metabolism and the synthesis of amino acids, lipids, heme and iron-sulfur clusters. With 
the exception of a handful of hydrophobic mitochondrially encoded membrane proteins, all these proteins are synthesized 
on cytosolic ribosomes, targeted to receptors on the mitochondrial surface, and transported across or inserted into the outer 
and inner mitochondrial membrane before they are folded and assembled into their final native structure. This review article 
provides a comprehensive overview of the mechanisms and components of the mitochondrial protein import systems with 
a particular focus on recent developments in the field.
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1  Introduction

In 1980, Günther Blobel published a theoretical paper on 
“intracellular protein topogenesis” in which he coined the 
fundamental terminology of protein translocation [1]. For 
example, he defined four different classes of topogenic sig-
nals as determinants for the specific intracellular localization 
of each protein: (i) signal (or targeting) sequences that initi-
ate protein translocation to compartments such as the endo-
plasmic reticulum (ER), the mitochondria or chloroplasts, 
(ii) stop-transfer signals that interrupt these translocation 
reactions to mediate lateral membrane insertion; (iii) sorting 
sequences that bind targeting factors (such as importins for 
nuclear import, although they were not discovered at that 
time), and (iv) insertion sequences that integrate proteins 
into membranes. Moreover, he defined the terminology for 
co-translational (for translocation into the ER and the bacte-
rial inner membrane and for the insertion of mitochondrial 
translation products) and post-translational translocation (for 
import into mitochondria, chloroplasts and peroxisomes) as 
well as different topological classes of membrane proteins, 
in particular monotopic (membrane-associated), bitopic 

(single spanning) and polytopic (multispanning) proteins. 
This conceptual study paved the way to decades of inten-
sive research by the protein translocation community that 
elucidated in impressive detail the individual translocation 
processes, their constituents, the underlying biophysical 
and energetic mechanisms and the regulatory principles 
that adapt their activities to cellular needs. Nevertheless, 
the recent discussions about the temporal and mechanistic 
coordination of the synthesis and the translocation of mito-
chondrial precursor proteins, i.e. whether mitochondrial 
import is post- or co-translational, shows the importance of 
Günther Blobel’s definitions for these categories and that 
many details of the protein translocation processes still await 
to be discovered.

Mitochondria consist of two membranes the outer and 
inner membrane which enclose two aqueous compartments: 
the intermembrane space (IMS) and the matrix [2]. The IMS 
and inner membrane are functionally and structurally sepa-
rated into regions forming the cristae, invaginations that har-
bor predominantly the complexes of the respiratory chain 
[3–8], and the region that is underlying the outer membrane 
and crucial for the exchange of metabolites, proteins and 
lipids between mitochondria and the rest of the cell [9–11].

Mitochondria contain a small genome for the expression 
of a few proteins (13 in humans, 8 in baker’s yeast). These 
proteins are almost exclusively very hydrophobic membrane 
proteins which form the reaction centers of the respiratory 
chain. Owing to their extreme hydrophobicity, these proteins 
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cannot be synthesized in the cytosol as precursors but are 
integrated into the inner membrane co-translationally by 
mitochondrial ribosomes, which are tightly bound to the 
inner membrane [4, 12, 13]. All other mitochondrial pro-
teins, roughly 800 in yeast and 1500 in human cells [14, 15] 
are nuclear-encoded, synthesized on cytosolic ribosomes 
and imported into mitochondria. Particularly the early 
steps in mitochondrial protein targeting are poorly under-
stood. Several recent studies reported that the accumula-
tion of mitochondrial precursor proteins in the cytosol leads 
to severe stress conditions which induces several distinct, 
though overlapping signaling responses that were named 
mitochondrial precursor overaccumulation stress (mPOS), 
unfolded protein response activated by mistargeting of pro-
teins (UPRam), mitochondrial unfolded protein response 
(mtUPR) and mitochondrial compromised protein import 
response (mitoCPR) [16–20]. In the cytosol, mitochondrial 
precursor proteins are prone to aggregate and have been 
found to associate with aggregates such as those formed by 
poly-Q proteins [21–23]. Hence, the targeting to mitochon-
dria needs to be efficient and tightly regulated. In this review, 
an overview is provided about how mitochondrial precursor 
proteins are targeted to, imported into and distributed within 
mitochondria.

2 � Protein Targeting to Mitochondria

In general, protein targeting can be divided into four distinct 
reactions (Fig. 1a): precursor proteins are (1) synthesized on 
ribosomes, (2) recognized by general or specific targeting 
factors, (3) targeted to the respective membrane of destina-
tion, and finally (4) translocated across or inserted into the 
membrane at the target compartment [24]. Since proteins are 
imported into mitochondria in an unfolded conformation, 
chaperones and other folding factors assist in these reactions 
to maintain precursors import-competent and even actively 
support their targeting and binding to receptor proteins on 
the mitochondrial outer membrane [25–27].

Mitochondrial precursors are synthesized with target-
ing signals which direct them to the different mitochondrial 
subcompartments (Fig. 1b). The majority of mitochondrial 
proteins are synthesized with an N-terminal matrix-targeting 
sequence (MTS). These signals are about 8 to 80 residues 
in length, lack negative residues, are rich in hydroxylated 
residues such as serines and threonines, form amphipathic 
α-helices with one positively charged and one hydrophobic 
face and drive import into the matrix. Thus, they are mainly 
found on matrix and inner membrane proteins, but in some 
cases can also be present in proteins of the IMS and even 
the outer membrane [28–32]. Interestingly, a recent study 
shows that proteins of the matrix and the inner membrane 
often contain additional internal MTS-like structures (iMTS-
L) that help to maintain them in an import-competent state 
(Fig. 1b) [33, 34].

A B

Fig. 1   Schematic flow of protein targeting. a Protein targeting follows 
4 steps. (1) Proteins are (1) synthesized on cytosolic ribosomes, (2) 
recognized by targeting factors and chaperones which prevent their 
misfolding and aggregation, (3) targeted to their destination mem-
brane, and (4) recognized and threaded through translocation pores 
in their target membrane to reach their respective compartment. b 
Targeting signals in mitochondrial proteins. Matrix proteins contain 
presequences or MTSs that form an amphipathic alpha helix with a 

hydrophobic (ϕ) and a positively (+) charged site. The import effi-
ciency can be improved by iMTS-L sequences in the mature part 
of these proteins. But MTSs are not the only signals for mitochon-
drial targeting and a number of further examples are shown here and 
described in the text. Arrowheads indicate sites for proteolytic pro-
cessing. MTS matrix-targeting sequence, iMTS-L internal MTS-like 
structure, TMD transmembrane domain, IM inner membrane, OM 
outer membrane, IMS intermembrane space
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A large group of multispanning inner membrane proteins, 
in particular carriers and core components of the inner mem-
brane translocases, lack N-terminal targeting signals but 
use internal signals that are in proximity to their transmem-
brane domains (TMD) (Fig. 1b) [35]. Some monotopic inner 
membrane proteins, such as the yeast Bcs1, Mdj2, Tim14/
Pam18 or the mammalian DAKAP1 [36, 37] also employ 
internal signals. In this case, an internal TMD is followed by 
a positively charged stretch. Presumably, this region forms a 
hairpin-like loop that mimics an MTS.

Proteins of the outer membrane normally lack N-ter-
minal MTSs and use heterogeneous signals to be targeted 
to mitochondria. A number of proteins are anchored to the 
outer membrane by C-terminal TMDs (Fig. 1b). These tail-
anchored proteins (TA-proteins) can be distributed between 
mitochondria, ER and peroxisomes. Mitochondrial specific-
ity can be achieved by a lower hydrophobicity of the TMD 
and a less charged C-terminus compared to peroxisomal TA-
proteins [26, 38, 39]. In addition, the TMDs of mitochon-
drial TA-proteins are shorter than those of ER proteins [40]. 
Also the composition of the membrane is probably critical 
for the localization of TA-proteins. In yeast, the ergosterol 
content influenced the targeting of TA-proteins [41]. TA-
anchored ER proteins that were erroneously targeted to the 
mitochondria are removed by the AAA protein Msp1 on 
the outer membrane [42, 43]. Similar to TA-proteins but 
inverse in their final topology, signal-anchored proteins use 
an N-terminal TMD to be targeted to the outer mitochon-
drial membrane. Tom20 and Tom70 are examples for sig-
nal-anchored proteins [44]. Many outer membrane proteins 
belong to the group of β-barrel proteins. These proteins pre-
sumably use β-sheet hairpin structures as targeting signals 

to reach the mitochondrial outer membrane [45]. Additional 
signals mediate the insertion from the intermembrane space 
into the outer membrane of β-barrel proteins which are con-
served between prokaryotes and eukaryotes [46, 47].

Most proteins of the IMS are of low molecular mass 
(7–20  kDa) and either coordinate cofactors or contain 
structural disulfide bonds, features that are critical for their 
targeting. As a consequence, cysteine residues often play 
crucial roles as part of targeting signals in these proteins. In 
particular, so-called ITS/MISS sequences were shown to be 
necessary and sufficient for IMS targeting (Fig. 1b). These 
sequences form internal amphipathic helices in direct prox-
imity to a cysteine residue, which is essential for mitochon-
drial import [48, 49]. These signals are found in twin-Cx9C 
and small Tim proteins [50–54].

The presence of N-terminal MTSs can be predicted by 
algorithms [55, 56]. However, the prediction programs do 
not recognize other targeting signals, making it often dif-
ficult to predict the mitochondrial localization of proteins 
of the outer membrane, the IMS and the inner membrane. 
Nevertheless, in the last decade, the mitochondrial proteome 
was studied into detail, which gave rise to datasets of mito-
chondrial proteins and their sub-organellar localization [2, 
14, 52, 57–59].

2.1 � Post‑translational Targeting: Chaperone‑guided 
Targeting

Our understanding of the early steps in the targeting of mito-
chondrial precursors is very limited. Several cytosolic fac-
tors are critical for the targeting of mitochondrial precursor 
proteins (Fig. 2a). Cytosolic chaperones in particular, such 

A B C

Fig. 2   Protein targeting to the mitochondrial outer membrane. a 
Chaperone-guided post-translational targeting of mitochondrial pro-
teins. After their synthesis, precursors are bound by chaperones of the 
Hsp70 family and their cofactors. The Hsp90 co-chaperone Sti1 binds 
the MTS and recruits Hsp70 to the precursor. b Certain mitochon-
drial proteins might be imported co-translationally. In some cases, the 
mRNA-binding factor Puf3 on the mitochondrial surface facilitates 
this reaction. The ribosomal associated NAC complex can bind to 

the mitochondrial outer membrane protein Om14 to tether the ribo-
some to the outer membrane. NAC nascent polypeptide-associated 
complex. c ER-mediated mitochondrial protein targeting: ER-SURF. 
Precursor proteins bind to the ER membrane where the J protein Djp1 
recognizes the mitochondrial proteins. The mitochondrial proteins 
are handed over to the mitochondrial outer membrane in order to be 
imported
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as Ssa1 or Ydj1, have been proposed to target proteins to 
mitochondria, owing to the observation that mutants in these 
components accumulate precursor proteins in the cytosol 
[60, 61]. However, this accumulation could also, at least in 
part, be explained by the critical role of chaperones in the 
degradation of cytosolic precursors [62].

In yeast, cytosolic co-chaperones of the Hsp40 family 
(also called J proteins), in particular Ydj1, Xdj1 and Sis1, 
recognize mitochondrial precursors during or subsequently 
to their synthesis and recruit cytosolic Hsp70 chaperones 
(Ssa1–Ssa4) [27, 63, 64]. Moreover, Hsp90 and its cofactors, 
such as the yeast Sti1, bind to precursors in the cytosol [25, 
65]. At least in mammalian cells, these general chaperones 
are assisted by precursor-binding proteins, such as ubiquilin, 
which are presumably particularly important for the target-
ing of hydrophobic precursors [66]. Cytosolic chaperones 
have been proposed to facilitate post-translational targeting 
by several mechanisms: they maintain precursors unfolded 
and import-competent, they prevent their aggregation and 
degradation by the ubiquitin-proteasome system and they 
can directly bind to mitochondrial surface receptors, in par-
ticular to Tom70, and thus promote the targeting of precur-
sor proteins. Although it is well accepted that chaperones 
play a crucial role in precursor targeting, their precise con-
tribution as targeting factors or in keeping precursor pro-
teins import-competent as well as their substrate spectrum is 
unclear. Thus, whether they exhibit a general function for all 
precursors or are only critical for specific, aggregation-prone 
preproteins has to be shown in the future.

2.2 � Co‑translational Targeting

There is very good evidence that the bulk of mitochondrial 
protein import occurs in a post-translational manner [67, 68]. 
However, a number of inner membrane proteins have been 
reported to be imported co-translationally. Since the early 
2000s the intracellular distribution of mRNAs has been stud-
ied by microscopy and fractionation techniques. In yeast, spe-
cific mitochondrial mRNAs, such as those encoding the inner 
membrane protein Oxa1, were reported to be enriched on the 
mitochondrial surface by binding to the mitochondrial surface 
protein Puf3 and components of the TOM complex [69–72]. 
In addition, the yeast nascent polypeptide-associated com-
plex (NAC) was suggested to interact with the mitochondrial 
outer membrane protein Om14, thereby targeting cytosolic 
ribosomes to mitochondria [73, 74]. Indeed, NAC is impor-
tant for mitochondrial protein targeting (Fig. 2b). The loss of 
NAC leads to ER localization of mitochondrial proteins [75]. 
Moreover, proximity-specific ribosomal profiling data show 
that certain mitochondrial (membrane) proteins are translated 
at the mitochondrial outer membrane, clearly demonstrating 
that co-translational targeting exists [76, 77]. In addition, the 
mitochondrial matrix protein fumarase has been shown as the 

first protein to be imported in a co-translational fashion in vitro 
and in vivo in yeast [78–80]. To what extent co-translational 
import is used is not clear.

2.3 � ER‑mediated Mitochondrial Targeting

A recent study screened for factors that are necessary for effi-
cient targeting of the mitochondrial inner membrane protein 
Oxa1 in yeast and identified a novel targeting pathway that 
was named ER-SURF (ER surface-mediated protein targeting) 
(Fig. 2c). The surface of the ER plays an important and active 
role in the intracellular targeting of precursors from ribosomes 
to mitochondria. The J protein Djp1 was shown to serve as an 
important component of this pathway which seems to be pre-
dominantly relevant for the targeting of hydrophobic precur-
sors of membrane proteins [81, 82]. A close cooperation of the 
ER and mitochondria for the exchange of lipids and calcium 
was documented before, processes that are facilitated by physi-
cal contact sites of both organelles such as those formed by 
the ER mitochondria encounter structure (ERMES) complex 
of yeast cells [10, 83–86]. In mammalian cells, the ER and 
mitochondrial membrane often can form an extended contact 
region, named MAM (mitochondria-associated membranes). 
However, whether ERMES or MAM are critical sites for the 
precursor transfer from ER to mitochondria in ER-SURF is 
not known.

The observation that the ER surface plays a facilitating 
role in mitochondrial preprotein import came as a surprise 
because the ER is considered as an adverse off-site target 
for mitochondrial proteins, particularly under stress condi-
tions [75, 87, 88]. RNA localization analyses surprisingly 
revealed that mRNAs for many mitochondrial proteins are 
located on the ER surface suggesting that these proteins are 
intentionally synthesized on the ER from which they are 
handed over to mitochondria [77, 89]. However, the details 
of the ER-SURF pathway are not well understood and still 
await elucidation.

The diverse targeting mechanisms described here are not 
mutually exclusive and appear to operate in parallel, each 
being used by different proteins to varying degrees. This use 
of several targeting mechanisms resembles the targeting of 
ER proteins that employ multiple sorting pathways [24, 90, 
91]. The use of parallel pathways provides redundancy and 
possibly a more stable situation that is robust even under 
variable growth conditions.

3 � Recognition at the Mitochondrial Outer 
Membrane

Receptors on the mitochondrial surface recognize mitochon-
drial precursors. These receptors are part of the translocase 
of the outer membrane (TOM) complex and direct their 
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substrates into the protein-conducting channel that is formed 
by the β-barrel protein Tom40. Two receptor systems act in 
parallel (Fig. 3a): One receptor system is formed by Tom20 
and Tom22 which are tightly associated to the TOM complex 
to bind N-terminal MTSs of matrix-targeted proteins as well 
as β-barrel proteins [92–94]. Tom70 (and, in baker’s yeast, 
its paralog Tom71) is more loosely and perhaps dynamically 
associated with the TOM core complex. It binds preferen-
tially to the internal targeting sequences of carrier proteins 
and multi-spanning proteins of the outer membrane but also 
to the iMTS-L sequences in matrix proteins. Thereby Tom70 
recruites them to the outer membrane and maintains these 
bound precursors unfolded and import-competent [25, 33, 
95] (Fig. 3b). Tom70 not only recognizes presequences but 
also chaperones of the Hsp70 and Hsp90 systems and its 
different binding sites cooperate to keep precursors unfolded 
and to feed them into the import machinery (Fig. 3a) [25, 33, 
96]. Tom70 belongs to the family of tetratricopeptide repeat 
(TPR) proteins. Many TPR proteins serve as co-chaperones 
that assist Hsp70 and Hsp90 chaperones during protein (un)
folding [97, 98].

Although Tom20 preferentially binds to presequences 
and Tom70 to internal targeting sequences [99, 100], in vivo 
both receptors are able to functionally replace each other. 
Single mutants are viable, though their mitochondria are not 
fully functional, but double mutants that lack both receptors 
are inviable. Although these receptors, in particular Tom70, 
are only found in fungi and animals but not in many other 
eukaryotic groups, the concept of two cooperative recep-
tors that differ in their substrate spectrum might be rather 
universal and was developed several times independently in 
the eukaryotic lineage [101–103].

4 � Protein Import into Mitochondria

The TOM complex serves as the general entry gate into 
mitochondria. In its fully active form, it contains three 
Tom40 β-barrel channels that are connected by a central 
cluster of Tom22 subunits. The small TOM proteins Tom5, 
Tom6 and Tom7 regulate the assembly and further stabi-
lize the TOM complex [92, 94]. Due to a dynamic reor-
ganization of the TOM complex, smaller TOM complexes 
with only two Tom40 β-barrel channels also exist, which 
have been proposed to be important for the biogenesis 
of new TOM complexes and for regulation of mitochon-
drial translocation. Phosphorylation of the TOM complex 
plays a further regulatory role to adapt the translocation 
efficiency of cells to different growth conditions or cell 
cycle stages [104, 105]. The mechanism by which precur-
sors traverse the outer membrane is not well understood, 
but there is evidence that several binding sites along the 
import route drive translocation by sequential interac-
tions [94, 106]. It was suggested that these binding sites 
increase in affinity to guide proteins to the translocase of 
the inner membrane (TIM) complex, but the evidence for 
such a mechanism is not strong [107]. In any case, the 
trans-site of the TOM complex serves as a branch point 
of several import routes from which precursors need to 
be sorted to further destinations such as the matrix, the 
inner membrane, the IMS and, for β-barrel proteins, via 
the IMS into the outer membrane. Since many excellent 
review articles described the details of these import routes 
and the machineries involved in great detail [108, 109] we 
will give here only a general overview.

A B

Fig. 3   Receptors of the TOM-channel. a The mitochondrial trans-
locase of the outer membrane (TOM) is a protein complex consist-
ing of a pore forming β-barrel protein Tom40. Tom20 and Tom22, 
as well as Tom70 and its paralog Tom71 form the receptors of the 
TOM complex. b Tom20 recognizes predominantly N-terminal pre-

sequences whereas Tom70 binds internal targeting signals, such as 
those present in carrier proteins. Tom70 cooperates with chaperones 
such as Hsp90 and binds iMTS-Ls of proteins. Thereby it maintains 
proteins import-competent
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4.1 � Presequence‑mediated Import by the TIM23 
Translocase

The majority of mitochondrial proteins use the “classical” 
import pathway, the import through the presequence trans-
locase (Fig. 4a). These precursor proteins are recognized by 
Tom20/Tom22 and translocated in an unfolded state through 
the Tom40 pore. The MTS facilitates the binding to Tom20/
Tom22 [99, 110] and the translocation through the TOM 
pore after which they bind to the trans-site of the TOM com-
plex which is in part formed by the IMS domain of Tom22. 
Tom22 binds with low affinity to Tim21 [111], a subunit 
that is important to recruit the TIM23 complex that serves 
as the presequence translocase in the inner membrane. The 
presequence is then handed over to Tim50, a membrane-
anchored TIM23 subunit with a large hydrophilic domain 
exposed into the IMS [112, 113]. Tim50 and the N-terminal 
region of Tim23 pass the precursor on to the TIM23 pore 
that is formed by its two multispanning inner membrane 
subunits Tim23 and Tim17 [114–118]. Since the respiratory 
chain pumps protons from the matrix into the IMS, the inner 
membrane facing the IMS is positively charged whereas the 
membrane side facing the matrix is negatively charged. The 
positively charged MTS presumably makes use of this gra-
dient to be translocated by an electrophoresis-like reaction 
through the TIM23 channel [119, 120].

The import motor, also called the PAM machinery (pre-
sequence translocase-associated motor), is docked onto the 
matrix side of the TIM23 complex. Its active player is the 
matrix Hsp70 chaperone (mtHsp70, Ssc1 in yeast and mor-
talin in humans), which binds the incoming polypeptides 

and thereby prevents backsliding [96]. According to the 
Brownian ratchet hypothesis, which today is well-accepted 
in the field, Brownian movement is believed to direct the 
precursor further into the matrix, so that another Hsp70 can 
associate with it. In addition to the random Brownian move-
ment, “entropic pulling” might support protein translocation 
using a force of entropic origin [121]. The Tim44 subunit 
serves as the Hsp70 recruitment site on the import chan-
nel that ensures the close proximity of Hsp70 to the import 
pore [122–124], and several regulatory proteins control the 
ATPase cycle of Hsp70 that is essential for the import reac-
tion [122, 125, 126]. Following translocation, the MTSs are 
removed by the mitochondrial processing peptidase (MPP) 
and rapidly degraded. In the matrix, protein folding is sup-
ported by Hsp70 and other chaperones [28, 127].

Proteins with a single TMD can use a stop-transfer mech-
anism to be laterally released into the inner membrane. As 
proposed in Günther Blobel’s review of 1980, these proteins 
contain stop-anchor signals which mediate their transloca-
tion arrest and prevent their further translocation into the 
matrix [128–130].

4.2 � Import and Membrane‑insertion of Carrier 
Proteins by the TIM22 Translocase

Carrier proteins use an alternative inner membrane trans-
locase, the TIM22 complex, to be inserted into the inner 
membrane (Fig. 4b). They are initially recognized predomi-
nantly by Tom70 on the outer membrane which, together 
with Hsp70 and Hsp90 chaperones keeps them unfolded and 
prevents their aggregation [25, 131]. Following translocation 

A B C

Fig. 4   Different import routes lead to the matrix, the inner membrane 
or the outer membrane. a Matrix targeting by the presequence trans-
locase. Proteins with an N-terminal MTS are translocated through 
the TOM complex. In the IMS, Tim50 recognizes the emerging MTS 
and guides the polypeptide into the translocation pore of the TIM23 
complex. The membrane potential (ΔΨ) facilitates the transport 
of the MTS across the inner membrane. The import motor or PAM 
complex employs the mitochondrial Hsp70 Ssc1 to complete the 
translocation into the matrix in an ATP-dependent reaction. The mito-
chondrial processing peptidase (MPP) removes the MTS from most 
precursors. Stop-transfer sequences can laterally insert translocation 

intermediates into the inner membrane. b Carrier proteins use the 
TIM22 complex. Carrier proteins are polytopic membrane proteins 
which are ushered by the Tim9–Tim10 hexamer through the IMS and 
inserted into the inner membrane by the TIM22 complex in a mem-
brane potential-dependent reaction. c Import of β-barrel proteins by 
the SAM/TOB complex. Presumably owing to their bacterial origin, 
β-barrel proteins are inserted into the outer membrane from the IMS. 
Small Tim proteins escort these hydrophobic proteins to the SAM/
TOB complex which mediates their integration. OM outer membrane, 
IM inner membrane, IMS intermembrane space
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through the TOM channel, they bind to a soluble chaper-
one complex in the IMS, the hexameric Tim9–Tim10 
complex that consists of three Tim9 and three Tim10 subu-
nits [132–135]. This step is independent of the membrane 
potential [35]. Inside of the IMS, carriers are passed on to 
a second hexameric chaperone, the Tim9–Tim10–Tim12 
complex, that consists of three Tim9, two Tim10 and one 
Tim12 protein and that is tightly bound to Tim22, the core 
subunit of the TIM22 complex [136, 137]. Several accessory 
membrane proteins assist Tim22 in its role as membrane 
insertase for carriers such as Tim54, Tim18 and, in humans, 
Tim29 and acylglycerol kinase [138–142].

4.3 � The Insertion of β‑Barrel Proteins into the Outer 
Membrane by the SAM/TOB Complex

β-Barrel proteins of the outer membrane, such as Tom40 
or Por1, are presumably recognized by specific β-hairpin 
structures [27, 45, 143] before they are translocated through 
the TOM channel and bound by the Tim9–Tim10 complex 
(Fig. 4c). From there, they are passed on to the SAM (sorting 
and assembly machinery) or TOB (topogenesis of β-barrel 
proteins) complex in the outer membrane [133, 143]. Precur-
sors are integrated into the outer membrane by the essen-
tial protein Sam50 (also Tob55 or Omp85), that itself is 
a β-barrel protein. Sam50 can presumably open its barrel 
structure on one side in order to release its substrates into 
the lipid bilayer [143–145].

The mechanisms by which TA proteins are recognized 
and inserted into the mitochondrial outer membrane are 
largely elusive. However, in vitro studies suggest that some 
of them can insert without a specific insertion machinery 
[39].

4.4 � Mia40‑mediated Import 
into the Intermembrane Space

Many small proteins of the IMS use the mitochondrial 
disulfide relay or MIA machinery (Fig. 5) [146]. These pro-
teins are characterized by conserved cysteine motifs [50, 
147]. They traverse the TOM channel and bind the IMS 
protein Mia40 (called CHCHD4 in humans), which pre-
vents their backsliding into the cytosol. Mia40, the core 
component of the MIA import machinery, is an oxidore-
ductase with a hydrophobic pocket. For a long time it was 
believed that Mia40 predominantly or exclusively binds its 
substrates via a mixed disulfide bond, an interaction that 
would trap them in the IMS [146, 148–151]. However, more 
recent studies suggest that the hydrophobic binding pocket 
of Mia40 mediates the crucial binding for protein transloca-
tion and its oxidoreductase activity is only used for oxidative 
folding of its substrates after and independent from their 
import reaction [54, 152]. For some substrates, such as the 

human inner membrane protein MICU1, Mia40-mediated 
oxidation even occurs independent from their import [153].

5 � The Mitochondrial Ultrastructure: 
Organization of Protein Import 
Machineries

Mitochondria are complex organelles with a highly organ-
ized ultrastructure. Many components, such as the TOM 
complexes in the outer membrane, are positioned at specific 
locations and define specific functional subdomains of the 
organelle [154]. This is particularly true for the structures 
in the inner membrane. Here the mitochondrial contact sites 
and cristae organization system (MICOS) complex plays a 
crucial role as heterooligomeric organizing structure [5, 
155]. MICOS bends the inner membrane to form its char-
acteristic cristae junctions [156]. In addition, the MICOS 
complex coordinates the distribution of many inner mem-
brane proteins such as the enzymes of the respiratory chain 
and of the import machinery. The MICOS subunit Mic60 
was shown to interact with the TOM complex and Mia40 
[157–159]. This interaction positions Mia40 in direct prox-
imity to the TOM pore to allow efficient import into the 
IMS [160]. In a similar way, MICOS might form contacts 
with the SAM/TOB complex to facilitate the biogenesis of 
β-barrel proteins [157] (Fig. 6).

The outer and inner membranes are further connected by 
contacts between the TOM complex and the TIM23 translo-
case in the inner membrane, in particular between the IMS 
domains of Tom22 and Tim50. These contacts are believed 
to align both translocases so that precursors are passed 
through both structures in a coordinated fashion [161].

The cytosolic side of the TOM complex also plays a cru-
cial role as a contact-forming structure. Tom70 forms an 

Fig. 5   The MIA import pathway. Proteins of the IMS usually have 
conserved cysteine patterns that serve as Mia40 recognition signals. 
After being transported through the TOM channel, these proteins are 
bound by Mia40 via its hydrophobic pocket. Subsequently, Mia40 
mediates their oxidative folding which prevents their re-translocation 
into the cytosol
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ER contact site together with the ER protein Lam6, and the 
TOM complex also plays a role for the ERMES complex 
[162–165]. In addition, the TOM complex interacts with 
Vps39 and Ypt7 to form contacts with the vacuole [165, 
166]. While these organelle contacts play a well-established 
role of the sorting of lipids, their contribution to the intracel-
lular protein translocation is less clear and an exciting aspect 
to study in the future. In his perspicacious review, Günther 
Blobel defined the underlying rules and signals of intracel-
lular protein topogenesis, but the example of mitochondrial 
biogenesis impressively demonstrates the complexity of 
protein sorting in a living cell. There is still a multitude of 
biology out there that awaits discovery.
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