Basic Statistical Terms

Statistics: The science of using information discovered from collecting, organizing, and studying
numbers(data).

Statistics is the discipline that concerns the collection, organization, displaying, analysis,
interpretation, and presentation of data.

Data: Numbers, letters, or special characters representing measurements of the properties of one’s
analytic units, or cases, in a study; data are the raw material of statistics.

Descriptive Statistics: They are brief descriptive coefficients that summarize a given data set.

Inferential Statistics: The body of statistical techniques concerned with making inferences about a
population based on drawing a sample from it.

Population: The collection of all the elements of interest.
Sample is the smaller part of the whole i.e(= that is, yani anlaminda) a subset of the entire population.
Sample Space: The set of all outcomes of an experiment.

Parameter: A summary measure of some characteristic for the population, such as the population
mean or proportion.

A statistic is defined as a numerical value, which is obtained from a sample of data.

The distribution of a statistical data set (or a population) is a listing or function showing all the possible
values (or intervals) of the data and how often they occur.

The mean (average) of a data set is found by adding all numbers in the data set and then dividing by
the number of values in the set.

The median is the middle value when a data set is ordered from least to greatest.
The mode is the number that occurs most often in a data set.
Variance:The avarage of the squarred differences from the mean.

Standard Deviation: The square root of a variable’s variance. The standard deviation is the most
commonly used measure of dispersion and represents approximately the average distance of values
from the mean of a distribution.
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Week 3- 18/03/2021
Topic: Continutiy of Basic Statistical Terms
Variable

Generally, it is any quantity, that varies. The characteristic measured or observed when an experiment
is carried out or an observation is made. Variables may be non-numerical or numerical. Since a non-
numerical observation can always be coded numerically, a variable is usually taken to be numerical.

Category

It is a homogeneous class or group of a population of objects or measurements.
Categorical Variable / Qualitative Variable.

A variable that denotes quality rather than a quantity that can be measured on a scale.
Quantitative Variable / Numerical Variable

A variable that takes numerical values for which arithmetic makes sense, for example, counts,
temperatures, weights, amounts of money, etc. For some variables that take numerical values,
arithmetic with those values does not make sense; such variables are not quantitative. For example,
adding and subtracting social security numbers does not make sense. Quantitative variables typically
have units of measurement, such as inches, people, or pounds

Random Variable

A random variable is an assignment of numbers to possible outcomes of a random experiment. For
example, consider tossing three coins. The number of heads showing when the coins land is a random
variable: it assigns the number 0 to the outcome {T, T, T}, the number 1 to the outcome {T, T, H}, the
number 2 to the outcome {T, H, H}, and the number 3 to the outcome {H, H, H}.

Probabilities are the study of “chance". When we calculate the probability of something occurring we
are calculating the likelihood of it happening.

Observation

The act of watching somebody or somothing carefully, especially to learn something.
Experiment

A process by which an observation or outcome is obtained.

In probabilities, an experiment is a process (could be "anything") in which there are one or more
(usually more) possible outcomes each of which depends on chance.

Trial
Single performance of well-defined experiment.
Outcome

An outcome is the result of an experiment or other situation involving uncertainity.
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Sample Space
The set S of all possible outcomes of an experiment is called Sample Space.
The sample space is usually written, or illustrated, using one of the following:
o alist of all the possible outcomes written inside a set that we call S,
e asample space diagram, or
e aVenn Diagram.
Event
Any subset E of the sample space S.

Given an experiment, along with its possible outcomes, an event is the name given to either one of the
possible outcomes, or a group of outcomes.

Events are usually referred to using a capital letter, such as A, B, C, ....
Union of Events

The occurance of either of two(or more) events.

Intersection of Events

The joint occurance of two or more events.

Exculusive Events

Exculusive events are the events whose interaction or the sample space that these events occuring at
the same time, is empty set.

Probability

A probability is a number expressed as either:
» aDecimal
» aFraction
» aPercentage

It's value is a measure of the likelihood of an event occurring.

A quantitative measure of uncertainty.

Notation
Given an event A, the probability of event A occurring is written:
p(A)
Read: "the probability of event A"
The likelihood of an event A occuring is measured on a scale that goes from 0 to 1, where:
e Qs the probability of somthing impossible.

e 1isthe probability of something certain.
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All other events have a probability that lies somewhere in between these two values.
Axioms of Probability. / Kolmogorov Axioms

There are three axioms of probability:

(1) Chances are always at least zero.

(2) The chance that something happens is 100%.

(3) If two events cannot both occur at the same time, the chance that either one occurs is the sum of
the chances that each occurs.

For example, consider an experiment that consists of tossing a coin once.

e The first axiom says that the chance that the coin lands heads, for instance, must be at least
zero.

e The second axiom says that the chance that the coin either lands heads or lands tails or lands
on its edge or doesn't land at all is 100%.

e The third axiom says that the chance that the coin either lands heads or lands tails is the sum
of the chance that the coin lands heads and the chance that the coin lands tails, because both
cannot occur in the same coin toss.

All other mathematical facts about probability can be derived from these three axioms. For example,
it is true that the chance that an event does not occur is (100% - the chance that the event occurs).
This is a consequence of the second and third axioms.

(Kolmogorov Axioms) Consider a random experiment with sample
space S and an event A C S of interest. If P(A) is defined and if

Axiom 1. P(A) >0

Axiom 2. P(A;UAU---) = P(A1) + P(A2) + - --
where A1, A, ... are disjoint events, and

Axiom 3. P(S) =1

then P(A) is the probability of event A occurring.

Joint Probability
The probabity of the intersection of events.
Conditional Probability

The probability that an event occurs when the outcome of some other event is given. In probability
theory, conditional probability is a measure of the probability of an event occurring, given that another
event (by assumption, presumption, assertion or evidence) has already occurred.

Notation: P(A\B).
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Independence

In the calculus of probabilities, independence is usually defined by reference to the principle of
compound probabilites. Two events are independent if the probability of the one is the same whether
the other is given or not.

P(A) = P(A\B) and P(B) =P(B\A)
Mesleki Yabanci Dil: 25 Mart 2021 (4.Hafta)
Axiom (Tr. Aksiyom)

An axiom, postulate or assumption is a statement that is taken to be true, to serve as a premise or
starting point for further reasoning and arguments.

Complementary event (Tr. Timleyen Olay)
The complementary event A’ to an event A is the event ‘A does not occur’.

With each event A is associated the complementary event A’ consisting of those experimental
outcomes that do not belong to A.

Continuos Random Variable

A variable whose set of possible values is a continuous interval of real numbers x, such that a<x<b, in
which a can be —oo oo and b can be oo .

A probability distribution is sometimes said to be continuous when it relates to a continuous random
variable.

In probability theory, a probability density function (PDF), or density of a continuous random variable,
is a function whose value at any given sample (or point) in the sample space (the set of possible values
taken by the random variable) can be interpreted as providing a relative likelihood that the value of
the random variable would equal that sample.

For a continuous random variable X the probability density function f is such that
P(x; <X < x3) = f;zf(x)dx for all x1<x2.
1

Discrete Random Variable

A random variable whose set of possible values is a finite or infinite sequence of numbers x1, x2,....
The probability distribution of a discrete random variable is referred to as a discrete distribution.
For a discrete random variable X, with possible values x1, x2,..., the function f, defined by

f(x)) = P(X =x;),j = 1,2,...is the probability function of X.

Cumulative Distribution Function

In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random
variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value
less than or equal to x.

F.(x) =P(X <x)
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Expected Value

The expected value of a random variable is the long-term limiting average of its values in independent
repeated experiments. The expected value of the random variable X is denoted by E(X).

E[X} — Z xz'f<xi>

0.9)

ElX]| = 5l ks

Variance

The variance of a random variable X, Var(X), is the expected value of the squared difference between
the variable and its expected value: Var(X) = E((X - E(X))"2)= E(x"2)-(E(x))"2

Standart Deviation

In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of
values.A low standard deviation indicates that the values tend to be close to the mean (also called the
expected value) of the set, while a high standard deviation indicates that the values are spread out
over a wider range.

Most commonly represented in mathematical texts and equations by the lower case Greek letter sigma
o, for the population standard deviation, or the Latin letter s, for the sample standard deviation.

Standard Error of a Statistic

The standard error (SE)of a statistic (usually an estimate of a parameter) is the standard deviation of
its sampling distribution or an estimate of that standard deviation. If the statistic is the sample mean,
it is called the standard error of the mean (SEM).

Covariance

In probability theory and statistics, covariance is a measure of the joint variability of two random
variables. If the greater values of one variable mainly correspond with the greater values of the other
variable, and the same holds for the lesser values (that is, the variables tend to show similar behavior),
the covariance is positive.In the opposite case, when the greater values of one variable mainly
correspond to the lesser values of the other, (that is, the variables tend to show opposite behavior),
the covariance is negative.

cov(X,Y) = E [(X — E[X])(Y — E[Y])]

Correlation

In statistics, correlation or dependence is any statistical relationship, whether causal or not, between
two random variables or bivariate data. In the broadest sense correlation is any statistical association,
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though it commonly refers to the degree to which a pair of variables are linearly related. Familiar
examples of dependent phenomena include the correlation between the height of parents and their
offspring, and the correlation between the price of a good and the quantity the consumers are willing
to purchase, as it is depicted in the so-called demand curve.

cov(X,Y) E[X — px)(Y — py)]

pxy = corr(X,Y) = =
oxoy oxoY

Moments of a Random Variable

The “moments” of a random variable (or of its distribution) are expected values of powers or related
functions of the random variable.

In probability theory and statistics, a central moment is a moment of a probability distribution of a
random variable about the random variable's mean; that is, it is the expected value of a specified
integer power of the deviation of the random variable from the mean.

The nth moment about the mean (or nth central moment) of a real-valued random variable X is the
guantity pn := E[(X - E[X])~n], where E is the expectation operator.

The nth moment about zero : E[(X-0)"n].
Skewness - Carpiklik

In probability theory and statistics, skewness is a measure of the asymmetry of the probability
distribution of a real-valued random variable about its mean. The skewness value can be positive, zero,
negative, or undefined.

The third central moment is the measure of the lopsidedness of the distribution; any symmetric
distribution will have a third central moment, if defined, of zero. The normalised third central moment
is called the skewness, often y.
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Kurtosis — Basiklik

In probability theory and statistics, kurtosis (from Greek: kuptog, kyrtos or kurtos, meaning "curved,
arching") is a measure of the "tailedness" of the probability distribution of a real-valued random
variable. Like skewness, kurtosis describes the shape of a probability distribution and there are
different ways of quantifying it for a theoretical distribution and corresponding ways of estimating it
from a sample from a population. Different measures of kurtosis may have different interpretations.

MESLEKi YABANCI DiL: 1 NiSAN 2021 (5.HAFTA)
The probability distribution of a discrete random variable is referred to as a discrete distribution.
THE BERNOULLI DISTRIBUTION

In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob
Bernoulli, is the discrete probability distribution of a random variable which takes the value 1 with
probability p and the value 0 with probability g=1-p. Less formally, it can be thought of as a model for
the set of possible outcomes of any single experiment that asks a yes—no question. Such questions lead
to outcomes that are boolean-valued: a single bit whose value is success/yes/true/one with probability
p and failure/no/false/zero with probability g. It can be used to represent a (possibly biased) coin toss
where 1 and 0 would represent "heads" and "tails" (or vice versa), respectively, and p would be the
probability of the coin landing on heads or tails, respectively.

Bernoulli Distribution

The simplest form of
random variable.

— Success/Failure os
— Heads/Tails a5
‘:' (=R

PiX=1)=p =

P(X=0)=1-p

E

Xl=p o :

Var(X )= p(l1-p)

THE BINOMIAL DiSTRIBUTION

In probability theory and statistics, the binomial distribution with parameters n and p is the discrete
probability distribution of the number of successes in a sequence of n independent experiments, each
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asking a yes—no question, and each with its own Boolean-valued outcome: success (with probability p)
or failure (with probability g = 1 - p). A single success/failure experiment is also called a Bernoulli trial
or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process; for a single trial,
i.e., n =1, the binomial distribution is a Bernoulli distribution.

Binomial Distribution Formula

”l X _ _n=-Xx

n
P(x) = X _m-xX __
(*) x ik (n—x)!x!

where

n = the number of trials (or the number being sampled)
x = the number of successes desired

p = probability of getting a success in one trial

g =1 - p = the probability of getting a failure in one trial

Historical Note

Independent trials having a common probability of success p were first studied by the Swiss
mathematician Jacques Bernoulli (1654—1705). In his book Ars Conjectandi (The Art of Conjecturing),
published by his nephew Nicholas eight years after his death in 1713, Bernoulli showed that if the
number of such trials were large, then the proportion of them that were successes would be close to
p with a probability near 1. Jacques Bernoulli was from the first generation of the most famous
mathematical family of all time. Altogether, there were between 8 and 12 Bernoullis, spread over three
generations, who made fundamental contributions to probability, statistics, and mathematics. One
difficulty in knowing their exact number is the fact that several had the same name. (For example, two
of the sons of Jacques’s brother Jean were named Jacques and Jean.) Another difficulty is that several
of the Bernoullis were known by different names in different places. Our Jacques (sometimes written
Jaques) was, for instance, also known as Jakob (sometimes written Jacob) and as James Bernoulli. But
whatever their number, their influence and output were prodigious. Like the Bachs of music, the
Bernoullis of mathematics were a family for the ages!

THE POISSON RANDOM VARIABLE / DiSTRiBUTION

A random variable X that takes on one of the values 0, 1, 2, ... is said to be a Poisson random variable
with parameter A if, for some A > 0,
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Equation (7.1) defines a probability mass function, since

] L -
Y piy=e? ZJ:—. —e et =1

1=l 1=l

The Poisson probability distribution was introduced by Simeon Denis Poisson in a * book he wrote
regarding the application of probability theory to lawsuits, criminal trials, and the like. This book,
published in 1837, was entitled Recherches sur la probabilite des jugements en mati “ ere criminelle et
en mati " ere civile (Investigations into the Probability of Verdicts in Criminal and Civil Matters). The
Poisson random variable has a tremendous range of applications in diverse areas because it may be
used as an approximation for a binomial random variable with parameters (n, p) when nis large and p
is small enough so that np is of moderate size. To see this, suppose that X is a binomial random variable
with parameters (n, p), and let A = np. Then

n!

PlIX =)

(n — r'r":'rpl:“ - P

n! (i.)’ (1 i_)’
(n— 04 \n "

nin — 1y--o(n — i 4+ 1)A5(1 — 3/m

1—i

' il — a/ny
Now, for n large and A moderate,
FI

(]_f) - ot Jzirr—lj---taz—e—lbtl (]_f] -1
" nt n

Hence, for n large and & moderate,

- i

PIX =i} = (,-9.%
[ H

In other words, if n independent trials, each of which results in a success with probability p, are
performed, then, when nis large and p is small enough to make np moderate, the number of successes
occurring is approximately a Poisson random variable with parameter A = np. This value A (which will
later be shown to equal the expected number of successes) will usually be determined empirically.
Some examples of random variables that generally obey the Poisson probability law [that is, they obey
Equation (7.1)] are as follows:

1. The number of misprints on a page (or a group of pages) of a book

2. The number of people in a community who survive to age 100

3. The number of wrong telephone numbers that are dialed in a day

4. The number of packages of dog biscuits sold in a particular store each day

5. The number of customers entering a post office on a given day

6. The number of vacancies occurring during a year in the federal judicial system

7. The number of a-particles discharged in a fixed period of time from some radioactive material
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THE GEOMETRIC RANDOM VARIABLE / DiISTRIBUTION

4.8.1 The Geometric Random Variable

Suppose that independent trials, each having a probability p.0 < p < 1, of being a
success, are performed. until a success occurs. If we let X equal the number of trials
required, then

PiX=nl=( — p™'p n=12,... (8.1)

Equation (8.1) follows because, in order for X to equal n, it is necessary and sufficient
that the first n — 1 trials are failures and the nth trial is a success. Equation (8.1) then
follows, since the outcomes of the successive trials are assumed to be independent.

Since
PIX=n=pY d—pyrt=—->L __
E:{ n) = pZ] N

n=1 n=1

it follows that, with probability 1, a success will eventually occur. Any random vari-
able X" whose probability mass function is given by Equation (8.1) is said to be a
geometric random variable with parameter p.

EXAMPLE 8b

Find the expected value of a geometric random variable.

Solution. Withg =1 — p, we have

E[X] = E ig'p
i=1

#

=Yi—1+ g p
1

r‘

=E:—13¢ p + Ecﬁ P

i=1

=) jadp + 1
;‘=11
=qzjq""p + 1
=1
Hence,
pE[X] =1
yielding the result
ElX) =1
p

In other words, if independent trials having a common probability p of being successful are performed
until the first success occurs, then the expected number of required trials equals 1/p. For instance, the
expected number of rolls of a fair die that it takes to obtain the value 1 is 6.
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4.8.2 The Negative Binomial Random Variable

Suppose that independent trials, each having probability p,0 = p = 1, of being a
success are performed until a total of r successes is accumulated. If we let X equal the
number of trials required, then

PIX =n) = (j - 11 )p’{l —p)" T n=rr+1,... (8.2)

Equation (8.2) follows because, in order for the rth success to occur at the nth trial,
there must be r — 1 successes in the first n — 1 trials and the nth trial must be a
success. The probability of the first event is

n—1 r—1 n—r
(r—l)‘n {l_P}

and the probability of the second is p; thus, by independence, Equation (8.2} is estab-
lished. To verify that a total of r successes must eventually be accumulated, either we
can prove analytically that

o0 o0

Y PX=nj=Y (’: - ll)p’u — =1 (8.3)

m=r n=r

or we can give a probabilistic argument as follows: The number of trials required
to obtain r successes can be expressed as ¥; + Y2 + .- + Y., where ¥} equals
the number of trials required for the first success, ¥> the number of additional trials
after the first success until the second success occurs, ¥3 the number of additional
trials until the third success, and so on. Because the trials are independent and all
have the same probability of success, it follows that ¥, ¥,, ..., ¥, are all geometric

r

random variables. Hence, each is finite with probability 1, s0 } ¥; must also be finite,
establishing Equation (8.3). =

Any random variable X whose probability mass function is given by Equation (8.2)
is said to be a negative binomial random variable with parameters (r, p). Note that a
geometric random variable is just a negative binomial with parameter (1, p).

In the next example, we use the negative binomial to obtain another solution of
the problem of the points.

4.8.3 The Hypergeometric Random Variable

Suppose that a sample of size n is to be chosen randomly (without replacement) from
an urn containing N balls, of which m are white and N — m are black. If we let X
denote the number of white balls selected, then

peg LDGZT)
()

A random variable X whose probability mass function is given by Equation (8.4) for
some values of n, N, m is said to be a hypergeometric random variable.

" (8.4)

Remark. Although we have written the hypergeometric probability mass func-
tion with { going from 0 to n, P{X = i} will actually be 0, unless i satisfies the inequali-
tiesn — (N — m) = i = minin,m). However, Equation (58.4) is always valid because

of our convention that ( ; ) is equal to 0 when either k = Oorr = k. |
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CONTINUOUS RANDOM VARIABLES

In Chapter 4, we considered discrete random variables—that is, random variables
whose set of possible values is either finite or countably infinite. However, there also
exist random variables whose set of possible values is uncountable. Two examples are
the time that a train arrives at a specified stop and the lifetime of a transistor. Let X
be such a random variable. We say that X is a continuous’ random variable if there
exists a nonnegative function f, defined for all real x £ (—oc, o0}, having the property
that, for any set B of real numbers ¥

PiX € B) = ff(x}dx (1.1)
fig

The function [ is called the probability density function of the random variable X.
(See Figure 5.1.)

In words, Equation (1.1) states that the probability that X will be in B may be
obtained by integrating the probability density function over the set 5. Since X must
assume some value, [ must satisfy

1 = PX € (—o0,00)} :f Fix) dx

All probability statements about X can be answered in terms of f. For instance, from
Equation (1.1), letting B = [a, b], we obtain

b
Pla=X f_t_h} :f Fix)dx (1.2}

a b
Pla = X = b) = arca of shaded region

FIGURE 5.1: Probability density function f.
If we let a = b in Equation (1.2), we get
a
P{X =a) = / fx)dx =0
a

In words, this equation states that the probability that a continuous random variable
will assume any fixed value is zero. Hence, for a continuous random variable,

PX < a)=P{X =a}=F(a) = / f(x)dx

—aa
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THE UNIFORM RANDOM VARIABLE
A random variable is said to be uniformiy distributed over the interval (0, 1) if its
probability density function is given by

1 0=x =1

0 otherwise G1)

flx) =

Note that Equation (3.1) is a density function, since f(x) = 0 and ffxf(x}d.r =

f[: dx = 1. Because f{x) = 0 only when x £ (0.1), it follows that X must assume

a value in interval (0, 1). Also, since f(x) is constant for x € (0, 1), X is just as likely to
fla) Fla)

1

F-a

I 1 a L g

(a) (b}

FIGURE 5.3: Graph of (a) f(a) and (b) F(a) for a uniform («, §) random variable.

be near any value in (0, 1) as it is to be near any other value. To verify this statement,
note that, forany0 = a = b < 1,

b
PlasXEhl:f flxyde=b — a

In other words, the probability that X is in any particular subinterval of (0, 1) equals
the length of that subinterval.

In general, we say that X is a uniform random variable on the interval (o, #) if the
probability density function of X is given by

1 .
f0) = —,5 — ife =x = B (2)

0 otherwise

Since Fla) = ffmf{x} dx, it follows from Equation (3.2) that the distribution function
of a uniform random variable on the interval (o, #) is given by

0 a=ua
a — o
Fla) = o <= a < f#
g — o
1 a=f

Figure 5.3 presents a graph of f{a) and F(a).

EXAMPLE 3a
Let X be uniformly distributed over (w, ). Find (a) E[X] and (b) Var(X).

Solution. (a)

E|X]= ]:xxf{x}cix

B
=f ! dx
a B—u
g2 — ol
T2 - @
_Pta
-2

Ogr. Gor. Umut Yamak



In words, the expected value of a random variable that is uniformly distributed
over some interval is equal to the midpoint of that interval.

(b) To find Var(X), we first calculate E[X?].

B
E[X?] = / X
B -
3B - a)
2 2
P tapta
= 3

Hence,

B2 +ap + o (@ + B)?
3 a 4

(B - )

. 12

Therefore, the variance of a random variable that is uniformly distributed over
some interval is the square of the length of that interval divided by 12. o

Var(X) =
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Mesleki Yabanci Dil: 8 Nisan 2021 (6.Hafta)

Normal Probability Distribution
Bell curves amd z-scoves

7.1 Identify the three defining characteristics of the normal probability
distribution.

A coutinuons
YAMAOm Vaviab)e is
usually o Measurement
Notonly com it hove
Mteger values, it con
also haye ) the decima)
values Hyamt £all

between ntegers. See
Problem 52¢ Por
wove details,

The normal probability distribution is a bell-shaped continuous distribution
that fulfills the following conditions:

* The distribution is symmetrical around the mean.

® The mean, median, and mode are the same value.

® The total area under the curve is equal to one.

The shape of the normal probability distribution is shown below.

mean

Because the normal distribution is continuous, it represents infinitely many
possible values, depending on the level of precision. Because there are an
infinite number of possible values, the probability that a continuous random
variable is equal to a specific single value is zero.

Instead of determining the probability of a single value occurring, when
exploring normal distributions, you define two endpoints and calculate the
probability that a chosen value will occur within the specified interval.

1.2 Describe the role that the mean, standard deviation, and z-score play in the
normal probability distribution.

The mean i is the center of a normal distribution. A higher mean shifts the
position of the probability distribution to the right while a lower mean shifts its
position to the left.

The standard deviation gis a measure of dispersion—the higher the standard
deviation, the wider the distribution. A smaller standard deviation results in a
narrower bell-shaped curve.

The z-score measures the number of standard deviations between the mean and
a specific value of x, according to the formula below.
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NORMAL RANDOM VARIABLES

We say that X is a normal random variable, or simply that X is normally distributed,
with parameters x and o2 if the density of X is given by

1
v2no

This density function is a bell-shaped curve that is symmetric about p. (See Figure 5.5.)

A YYD 2
e (X—p)" [lo

f(.l') =

399

(b)
FIGURE 5.5: Normal density function: (a) u = 0, o = 1; (b) arbitrary ;‘,az.

The normal distribution was introduced by the French mathematician Abraham
DeMoivre in 1733, who used it to approximate probabilities associated with bino-
mial random variables when the binomial parameter » is large. This result was later
extended by Laplace and others and is now encompassed in a probability theorem
known as the central limit theorem, which is discussed in Chapter 8. The central limit
theorem, one of the two most important results in probability theory.? gives a theo-
retical base to the often noted empirical observation that, in practice, many random
phenomena obey, at least approximately. a normal probability distribution. Some
examples of random phenomena obeying this behavior are the height of a man. the
velocity in any direction of a molecule in gas. and the error made in measuring a
physical quantity.

An important implication of the preceding result is that if X is normally distributed with parameters p
and o2, then Z = (X - u)/o is normally distributed with parameters 0 and 1. Such a random variable is
said to be a standard, or a unit, normal random variable. We now show that the parameters p and o2
of a normal random variable represent, respectively, its expected value and variance.

The Empirical Rule
one, two, and three stamdavd Aeviatrions from the mean

7.23 According to the empirical rule, how much of a norrnally distributed data set
lies within one, two, and three standard deviations of the mean?

That's one

According to the empirical rule, 68% of the data lies within one standard stamdawd

deviation of the mean, 95% of the data lies within two standard deviations, Aeviation above

and 99.7% of the data lies within three standard deviations. Amd one below
the meam.
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EXAMPLE 4a
Find E[X]and Var(X) when X is a normal random variable with parameters . and ~.

Solurion. Let us start by finding the mean and variance of the standard normal ran-
dom variable Z = (X — u)/o. We have

o
ElZ] = [ xfzix) dx
— O

] ) 2
= — [ xe Ty
War Jooc

%
— {,—.r'_.-l o0
- — —
=
W LT

=1

Thus,
Var(Z) = E[Z£7]

e 2
Var(Z) — (—xe ™" 1=, + [ e " 1< dx)
f —o

Because X = p + o Z. the preceding vields the results
ElX|=pn + aE|Z] = u

and )
Var(X) = o°Var(Z) = o° [

Historical Notes Concerning the Normal Distribution

The normal distribution was introduced by the French mathematician Abraham DeMoivre in 1733.
DeMoivre, who used this distribution to approximate probabilities connected with coin tossing, called
it the exponential bell-shaped curve.

Its usefulness, however, became truly apparent only in 1809, when the famous German mathematician
Karl Friedrich Gauss used it as an integral part of his approach to predicting the location of astronomical
entities. As a result, it became common after this time to call it the Gaussian distribution.

During the mid- to late 19th century, however, most statisticians started to believe that the majority
of data sets would have histograms conforming to the Gaussian bell-shaped form. Indeed, it came to
be accepted that it was “normal” for any well-behaved data set to follow this curve. As a result,
following the lead of the British statistician Karl Pearson, people began referring to the Gaussian curve
by calling it simply the normal curve. (A partial explanation as to why so many data sets conform to
the normal curve is provided by the central limit theorem, which is presented in Chapter 8.)
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Abraham DeMoivre (1667-1754)

Today there is no shortage of statistical consultants, many of whom ply their trade in the most elegant
of settings. However, the first of their breed worked, in the early years of the 18th century, out of a
dark, grubby betting shop in Long Acres, London, known as Slaughter’s Coffee House. He was Abraham
DeMoivre, a Protestant refugee from Catholic France, and, for a price, he would compute the
probability of gambling bets in all types of games of chance. Although DeMoivre, the discoverer of the
normal curve, made his living at the coffee shop, he was a mathematician of recognized abilities.
Indeed, he was a member of the Royal Society and was reported to be an intimate of Isaac Newton.
Listen to Karl Pearson imagining DeMoivre at work at Slaughter’s Coffee House: “I picture DeMoivre
working at a dirty table in the coffee house with a brokendown gambler beside him and Isaac Newton
walking through the crowd to his corner to fetch out his friend. It would make a great picture for an
inspired artist.”

Karl Friedrich Gauss (1777-1855), one of the earliest users of the normal curve, was one of the greatest
mathematicians of all time. Listen to the words of the well-known mathematical historian E. T. Bell, as
expressed in his 1954 book Men of Mathematics: In a chapter entitled “The Prince of Mathematicians,”
he writes, “Archimedes, Newton, and Gauss; these three are in a class by themselves among the great
mathematicians, and it is not for ordinary mortals to attempt to rank them in order of merit. All three
started tidal waves in both pure and applied mathematics. Archimedes esteemed his pure
mathematics more highly than its applications; Newton appears to have found the chief justification
for his mathematical inventions in the scientific uses to which he put them; while Gauss declared it
was all one to him whether he worked on the pure or on the applied side.”

5.4.1 The Normal Approximation to the Binomial Distribution

An important result in probability theory known as the DeMoivre-Laplace limit the-
orem states that when n is large, a binomial random variable with parameters n and p
will have approximately the same distribution as a normal random variable with the
same mean and variance as the binomial. This result was proved originally for the spe-
cial case of p = 1 by DeMoivre in 1733 and was then extended to general p by Laplace
in 1812. It formally states that if we “standardize™ the binomial by first subtracting its
mean np and then dividing the result by its standard deviation ,/np(1 — p), then the
distribution function of this standardized random variable (which has mean 0 and
variance 1) will converge to the standard normal distribution function as n—oo.

The DeMoivre—Laplace limit theorem

If 5§, denotes the number of successes that occur when n independent trials, each
resulting in a success with probability p, are performed, then, for anva = b,

Sy — np
Pia= ——— = b —di(b) — dia)
vap(ll — p)

as n—oo.

Because the preceding theorem is only a special case of the central limit theorem,
which is presented in Chapter 8, we shall not present a proof.

MNote that we now have two possible approximations to binomial probabilities: the
Poisson approximation, which is good when # is large and p is small, and the normal
approximation, which can be shown to be quite good when np(1 — p) is large. (See
Figure 5.6.) [The normal approximation will, in general, be quite good for values of n
satisfying np(1 — p) = 10.]
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FIGURE 5.6: The probability mass function of a binomial {n, p) random variable becomes more and maore
“normal” as n becomes larger and larger.

Note: In Problems 7.19-7.22, assume that the number of days it takes a homebuilder to
complete a house is normally distributed with an average completion time of 176.7 days and
a standard deviation of 24.8 days.

7.19 Calculate the probability that it will take between 185 and 225 days to
complete the next home.

Calculate the z-scores for x = 185 and x = 225.

__185-176.7 O 295-176.7
BT 048 T 948
_ 83 _ 483
T 94.8 T 9248
=0.33 =1.95

Note that P(0 <2< 0.33) = 0.1293 and P(0 < z< 1.95) = 0.4744.

P(185<x<225)=P(0.33<2<1.95)
=0.4744—-0.1293
=0.3451
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Whew it
comes +o binomial
Aistvibutious, pis
the provability of

A success amd q is
the provability of a
Lailuve. "Success”
meams you got the
one vesult out of
the two you weve
locking fov.

The provlew
) Acesw’t sy how
P19 the class is, put
s got +o be bigger
thewm |5 students i£
you're selecting Hhat
Mhy O'p *'l'\eW\
Vo\lwlowly.

These fovmulag Come
From Problew s

Subtvact 0.5
£from the left

boundary x =7 and
adad 0.5 to the vight
boundary x = §.

Using the Normal Distribution to Approximate the
Binomial Distribution

Another binowmial provability shovtcut

Describe the conditions under which the normal distribution can be used to
approximate the binomial distribution.

7.30

If n represents the number of trials in which only outcomes pand g may occur,
the normal distribution can be used to approximate the binomial distribution

aslong as np 25 and ng=5.
7.31

Describe the continuity correction that is applied when the normal dis-
tribution approximates the binomial distribution.

Continuity correction is used when a continuous distribution (such as the
normal distribution) is used to approximate a discrete distribution (such as the
binomial distribution). To correct for continuity, add 0.5 to a boundary of x or
subtract 0.5 from a boundary of x as directed below:
¢ Subtract 0.5 from the x-value representing the left boundary under the
normal curve.

* Add 0.5 to the x-value representing the right boundary under the normal
curve.

Note that continuity correction is unnecessary when » > 100.

Note: Problems 7.32-7.33 refer to a statistics class in which 60% of the students are female;
15 students from the class are randomly selected.
e 2

7.32 Use the normal approximation to the binomial distribution to calculate the
probability that this randomly selected group will contain either seven or eight
female students.

Determine whether conditions have been met to use the normal distribution to
approximate the binomial distribution.

np=(15)(0.6)=9;9=5
ng=(15)(0.4)=6;6=5

Calculate the mean and standard deviation of the binomial distribution.
u=np=(15)(0.6)=9

o= Jnpg = J(15)(0.6)(0.4) = /3.6 = 1.90

The problem asks you to calculate P(7 < x < 8). Apply the continuity correction
to adjust the boundaries: P(6.5 < x<8.5).
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Calculate the z-scores for endpoints x= 6.5 and 8.5.

According to Reference Table 1, P(-1.32 < z < 0) = 0.4066 and
P(-0.26 < z< 0) = 0.1026.

There is a 30.4%

or eight females.

P(6.5h=x=85)=P(-1.32=2=-0.26) =

_65-9 _85-9
5= 00 5700
_ —2.5 _ -5 \Jheh both x
1.90 1.90 values ave o the
=—1.32 =-0.26 Sawme side of the

WMeam (in Hhis Case,
they've vot, below 9)
M youve calcyl nting
€ avea of ), & voa
eteen thew, susi?:::‘ci-
the swaller probapilit,
From the hmse\»
P"dbmbili«l-y,

= 0.4066 —0.1026
=10.3040

chance that the group of 15 students will contain either seven

EXPONENTIAL RANDOM VARIABLES

A continuous random variable whose probability density function is given, for some
A > 0,by
re ™ ifx =0

f""’=[0 ifx < 0

is said to be an exponential random variable (or, more simply, is said to be exponen-
tially distributed) with parameter A. The cumulative distribution function F(a) of an

exponential random variable is given by

F(a) = P{X = a}

a -
=/ re " dx
0

— __p—Ax|a
o
=1—-—e a=0

Note that F(oo) = [~ ke dx = 1, as, of course, it must. The parameter 4 will now
be shown to equal the reciprocal of the expected value.

EXAMPLE 5a

Let X be an exponential random variable with parameter i. Calculate (a) E[X] and
(b) Var(X).
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Solution. (a) Since the density function is given by

e x =10

AE
f"”=|u X <0

we obtain, forn = 0, .
E[X"| = f e dx
il

Integrating by parts (with Ae™** = dv and u = x") vyields
-
E|X"]|= —f’e‘“m" + f e~y dx
i

n ™ .
=0 + —f ae— =1 gy
Ao

n
= —E[x"!
ZE(x)
Letting n = 1 and then n = 2 gives
1
2 2
E[X?) = —E[X] = =
[X%] = ZE[X] =

(b) Hence,
2 13- 1
Var(Xl=— — | =] = =
=3 (;L) a2

Thus, the mean of the exponential is the reciprocal of its parameter A, and the vari-
ance is the mean squared. |

In practice, the exponential distribution often arises as the distribution of the
amount of time until some specific event occurs. For instance, the amount of time
(starting from now) uniil an earthquake occurs, or until a new war breaks out, or
until a telephone call you receive turns out to be a wrong number are all random
variables that tend in practice to have exponential distributions. (For a theoretical
explanation of this phenomenon, see Section 4.7.)
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Exponential Distribution
Like the Poisson Aistribution, but continuous

7.45 Identify the defining characteristics of the exponential distribution.

The exponential probability distribution is a continuous distribution commonly
used to measure the time between events of interest, such as the time between
customer arrivals at a retail store or the time between failures in a process.

In Chapter 6, the variable Awas used to represent the mean of the Poisson dis-
tribution, a discrete distribution that counted the number of times an event
occurred during a specific time period. The mean and the standard deviation

of the exponential distribution are both %

The exponential distribution is the continuous counterpart of the discrete
Poisson distribution. For example, if a random variable follows the Poisson
distribution with an average occurrence of two times per minute (A= 2), then
the same random variable also fu]][)w*, the exponential distribution with a

1
mean and standard deviation of —==—=1(.5.

If xis a random variable that follows the exponential distribution, then the

—At

The Constamt probability that x= tis e
e is Eh:‘&r < “L'\l"'\be\‘ '
the “Oh'el’edli'ma
nonteviminatiy

Aecimal 271828,

."’(x 2.{)= e

Note: In Problems 7.49-7.51, assume that the tread life of a particular brand of tire is
exponentially distributed and averages 32,000 miles.

7.49 Calculate the probability that a set of these tires will have a tread life of at least
38.000 miles.

|
The mean of the distribution is — = 32 miles per set of tires (in thousands),

A

1
50 A= E =(L03125 sets of tires per thousand miles. Substitute {= 38 into the

exponential probability formula to calculate the probability that a particular set
of tires will have a tread life of more than 38,000 miles.

P(x=t)=e
P(IE ]: —{ 005125 W 58)
P(XES ]= = L1875
P(x=>38)=0.305
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Chapter 8

SAMPLING AND SAMPLING DISTRIBUTIONS
Working with & supset of a population

A population is defined as all possible outcomes or measurements of
interest, whereas a sample is a subset of a population. Many populations
are infinitely large; thus, virtually all statistical analyses are conducted

on samples drawn from a population. In order to interpret the results of
these analyses correctly, you must first understand the behavior of samples.

In this chapter, you will do just that through the exploration of sampling
distributions.

This chapter velies heavily on the normal
concepts mtroduced in Chaprey 7. The

sawmpling distvibution of Hhe mean o
the propovtion.

probability Aistvibution

two major topics ave Hhe

o \ WA the sampling Aistvibution of

O Make suve you umderstamd binomial distvivuti
utions

as they make o Juest appeavamce late v Hhe chapter, ;

Probability Sampling
So mamy ways to gather a sample

8.1 Describe how to select a simple random sample from a population.

A simple random sample is a sample that is randomly selected so that every
combination has an equal chance of being chosen. If an urn contains six balls of
different colors, selecting three of the balls without looking inside the urn is an
example of a simple random sample.

8.2  Describe how to select a systematic sample from a population.

Systematic sampling includes every kth member of the population in the sample;
the value of k will depend on the size of the population and the size of the

sample that is desired. For instance, if a sample size of 50 is needed from a
1,000

5
from the population is selected and included in the sample.

population of 1,000, then k = = 20. Systematically, every twentieth person
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Clust ov 8.3 Describe how to select a cluster sample from a population.

Sﬂ\lﬂ-\pﬁhg is
Cos{-e.[lpecﬁv e
blECam_ge i+ vequires
lr"\ﬂ\ilr"\at:‘ veseavch
About the population
In +he wa)) exoump] &'
You Aidn’} heawe to
Kuow vy tHhing ot
the shoppers ahean
of Hime—you just
weeded o Pidt a
few stoves Pro.,q
the Map,

Cluster sampling first divides the population into groups (or clusters) and then
randomly selects clusters to include in the sample. The entire cluster or just a
randomly selected portion of it may be selected. For example, if a researcher
wishes to poll a sample of shoppers at a shopping mall, she might choose a few
stores randomly, and then interview the customers inside those stores only. In
this example, the stores are the clusters.

In order for cluster sampling to be effective, each cluster selected for the sample

needs to be representative of the population at large.

8.4 Describe how to select a stratified sample from a population.

Stratified sampling first divides the population into mutually exclusive groups
(or strata) and then selects a random sample from each of those groups. It
differs from cluster sampling in that strata are defined in terms of specific
characteristics of the population, whereas clusters produce less homogeneous
samples.

Consider the example presented in Problem 8.3, in which clusters are assigned
based upon the stores in a mall. A stratified sample would be chosen in terms

1£ Auster
sampling had been
used at the mall to
ask hew wale teewagevs
vespond to e wew preduct,
theve'’s uo guavamtee that
the cluster sample would
have mcluded male
teenagers at all.

of a specific customer characteristic, such as gender. Stratified sampling is
helpful when it is important that the sample have certain characteristics of the
overall population. Usually the sample sizes are proportional to their known
relationship in the population.

Sampling Distribution of the Mean
Predicting the behavior of sample means

IHs callea the
CENTRAL liwmit
theovewm because it's
Fhe wost important
‘Hﬂemrgw, iw
statistics,

8.5 Identify the implications of the central ]iit theorem on the sampling
distribution of the mean.

According to the central limit theorem, as a sample size n gets larger, the
distribution of the sample means more closely approximates a normal
distribution, regardless of the distribution of the population from which the
sample was drawn. As a general rule of thumb, the assertions of the central limit
theorem are valid when n 2 30. If the population itself is normally distributed,
the sampling distribution of the mean is normal for any sample size.

As the samp]e size increases, the distribution of samp]e means converges toward
the center of the distribution. Thus, as the sample size increases, the standard
deviation of the sample means decreases. According to the central limit
. . a
theorem, the standard deviation of the sample means o- is equal to T,
n

where ois the standard deviation of the P(lpu]ati(m and n1is the sam]:lle size.

The standard deviation of the sample mean is formally known as the standard
error of the mean. The z—score for sample means is calculated based on the

formula below.

The vaviaple
x—u X vepresents the
wean of Hhe

Sample,
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Note: In Problems 8.6-8.8, assume that the systolic blood pressure of 30-year-old males is
normally distributed, with an average of 122 mmHg and a standard deviation of 10 mmHg.

8.6 A random sample of 16 men from this age group is selected. Calculate the

probability that the average blood pressure of the sample will be greater than The uwit

125 mmHg. wimHg stamds
Por "willimeters of

The population is normally distributed, so sample means are also normally wmevcury.”

distributed for any sample size. Calculate the standard error of the mean.

10
Tyos =
16
10
0‘.2; :
T =20

Calculate the z-score for the sample mean, x=125.

_x—p
= o-
_ 125122
Y

3

g = E

See Problew 73 - 2
(5 T

i you've wot suve haw
to use Refevence
Tavle |, According to Reference Table 1, the normal probability associated with z = 1.20
is 0.3849. The probability that the sample mean will be greater than 125 is the
ar'ea of the shaded region beneath the normal curve in the figure below. The
area below the curve on each side of the mean is 0.5, and the area between

the mean and the z-score 1.20 is (.3849,

x= 122 125
g= 1.20

Calculate the probability that the average blood pressure of the sample will be
greater than 125 mmHg.

P(x>125)= P (= >1.20)
=0.5-0.3849
=0.1151
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Finite Population Correction Factor
Sawmpling Aistvibution of the meam with a small population

Describe the finite population correction factor for the sampling distribution
for the mean and the conditions under which it should be applied.

When a population is very large, selecting something as part of a sample has
a negligible impact on the population. For instance, if you randomly chose
individuals from the continent of Europe and recorded the gender of the
individuals you chose, selecting a finite number of men would not significantly
change the probability that the next individual you chose would also be male.

In ether weovds,
W
whew — > 0.05.

Sowme textbocks
say 10% instead
of S,

However, when the sample size n is more than b percent of the population size
N, the finite population correction factor below should be applied. Under this
condition, the population size is small enough that the sampling events are
no longer independent of one another. The selection of one item from the
population impacts the probability of future items being selected.

=2 [N=n
- dn VN =1

Note: Problems 8.19-8.20 refer to a process that fills boxes with a mean of 340 grams of
cereal, with a standard deviation of 20 grams. Assume the probability distribution for this
population is unknown.

8.19

If a store purchases 600 boxes of cereal, what is the probability that a sample of
50 boxes from the order will average less than 336 grams?

Note that the sample is more than 5% of the total population:

n A0

N 600 0.083 > 0.05, Thus, you must apply the finite population correction
4
factor when calculating the standard error of the mean.

ml‘hdb\‘l‘ the
covvection, the

stamdawd evyoy of
the mean is 2. g3,

o= [N=n_20 [E0-50_ 20 [EO_, .,

T VN=1 oV 600—1 450 V599

Calculate the z-score for x = 336.

XTp_ 336 = 340 _ =1 — 148
a- 2.710 2.710

- =
=

There is a (.5 probability that the sample mean will be less than the population
mean of 340. According to Reference Table 1, there is a 0.4306 probability that
the sample mean will be between 336 and 340.

P(x<336)=P(z. <—1.48)
=P(z <0)-P(-1.48 <z <0)
=0.50 — 0.4306
=0.0694
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Sampling Distribution of the Proportion
Predicting the behavior of Aiscrete vandowm variables

8.23 Describe the sampling distribution of the proportion and the circumstances
under which it is used.

Make suve
Haat p is between
zeve amd ove. [E pis
greater Haowm one, | - p
will be negative amd your
calculator will explode
whewn you tvy to take
the sauawve voot of &
negative wamber,

The sampling distribution of the proportion is applied when the random
variable is binomially distributed. Divide the number of successes s by the
sample size n to calculate fi, the proportion of successes in the sample.

5
==
"

Calculate the standard error of the proportion &, by substituting the population
proportion # (not the sample proportion #) into the formula below.

p(l-p)

o, =
i n
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