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Abstract

Design of controllers and optimization of plants using biofilm reactors require dynamic models and efficient methods of simulation. Continuously
stirred biofilm reactors (CSBRs) are useful model units in modeling a variety of different types of biofilm reactors. Often the reaction kinetics
in the biofilm is described by a Monod expression. With standard modeling assumptions the equations describing the fast dynamics of a CSBR
will then, for each substrate, be one nonlinear partial differential equation coupled with one linear ordinary differential equation. Here, it is shown
how a few nonlinear ordinary first order differential equations, which may be solved with standard integration methods, can be used as a close
a
a
©

K

1

o
z
t
m
w
s
s
m
o
o
t
i
d
w
m

r

1
d

pproximation for both dynamic responses and steady state solutions. These low order models can conveniently be used in simulation software
nd for controller design.
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. Introduction

A biofilm can be characterized as an organic matrix consisting
f a complex community of bacteria, algae, fungi and proto-
oa embedded in organic polymers. In fixed biofilm reactors
he biofilm is attached to substrata that, generally, are imper-

eable. Substrates diffuse from the bulk liquid into the biofilm
here the bacteria carry out the desired transformations of the

ubstrates. For different kinds of biofilm reactors, the biofilm
ubstrata may be suspended carrier material or fixed packing
edia that can be either structured or random. Typical examples

f fixed biofilm reactors are: biological fluidized beds, biofilters
f different kinds, moving bed reactors, rotating biological con-
actors, and trickling filters. Reactors of this kind have attained
ncreased attention during the last three decades, particularly in
rinking water and wastewater treatment, due to the ability to
ithhold bacterial populations having low growth rates, and new
aterials that give high specific capacities [1,2].
To increase the knowledge about the dynamics of biofilm

eactors, modeling is an important tool, but the detailed mod-

els that arise are often very complex. Mathematically, they are
systems of stiff nonlinear partial differential equations with
a moving boundary (the biofilm thickness). For optimization,
controller design and for studies of large complex systems the
mathematical models have to be neither detailed nor extremely
accurate. However, the models have to be dynamic if, for exam-
ple, they are to be used in controller design [3].

One simplification that can be made is to divide the dynam-
ics of biofilm reactors into slow modes and fast modes. The
fast dynamics are mainly caused by the reactor hydraulics and
diffusive mass transfer in the biofilm, while the slow dynam-
ics are caused by the growth and decay of the organisms in the
biofilm. These dynamic modes are generally separated by sev-
eral orders of magnitude since it, generally, takes days for the
fauna to change while the fast transients settle in less than an
hour [4]. Thus, the slow transients can often be ignored when
only the fast dynamics are studied.

Most of the reported dynamic modeling and work on biofilm
reactors have been focused on the slow biofilm dynamics,
which have effects on the operation of the plants over longer
periods of time [5–7]. However, there are several reasons to
∗ Corresponding author. Tel.: +46 31 772 3713.
E-mail address: torsten.wik@volvo.com (T. Wik).

investigate, to model and to analyze the fast dynamics also.
First of all, in the daily operation of a plant using biofilm
reactors, the fast dynamics should be taken into considera-

369-703X/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

oi:10.1016/j.bej.2006.01.012



T. Wik et al. / Biochemical Engineering Journal 30 (2006) 16–25 17

tion when optimizing the operation, and to guarantee stable
control systems. The fast dynamics also play an important
role for the reactor efficiency when the substrate load varies
quickly [8]. Further, since physically based models of the fast
dynamics are in many ways simplifications of more complex
models of the slow dynamics, important model parameters are
the same [4,9,10]. Hence, parameter identification from exper-
imental data, using models of the fast dynamics, can be a
way of acquiring information about the slow dynamics as well
[11,2].

A continuously stirred biofilm reactor (CSBR) can be defined
as an ideally stirred tank reactor, where the reactions take place
in a biofilm attached to an impermeable substratum. The reac-
tion kinetics in the biofilm is generally nonlinear. With stan-
dard modeling assumptions (see the next section), the equations
describing the fast dynamics of a CSBR are, for each substrate,
one nonlinear partial differential equation (PDE) coupled with
one linear ordinary differential equation (ODE) for the mixing
in the bulk:

V
d

dt
S̃b = Q(S̃b

in − S̃b) − AD
∂S̃

∂x̃

∣∣∣∣
x̃=L

(1)

ε
∂S̃

∂t
= D

∂2S̃

∂x̃2 − r(S̃), 0 < x̃ < L (2)

with boundary conditions
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the input/output behavior of the bulk concentrations, and not a
detailed description of the biofilm itself, there is room for model
reduction.

When the reaction rate r depends linearly on the substrate
concentration and the system is in a steady state, the equations
can be solved analytically. Wik and Breitholtz [11] have stud-
ied the dynamic case when the reaction rate can be assumed to
depend linearly on the substrate concentration. They derived
a residue method that closely approximates the input/output
behavior with only two linear first order ODEs. A compari-
son with other methods revealed that the Galerkin method in
many cases also resulted in close approximations with only
a few first order ODEs. These results have been extended
to the case when two substrates are involved in the kinetics
[12].

The most common kinetics for biological substrate uptake is
the Monod expression

r = µm
X

Y

S̃

S̃ + Ks
, (5)

where µm is the maximum growth rate, X the bacterial con-
centration, Y the yield coefficient, Ks the saturation coeffi-
cient and S̃ is the substrate concentration. For very low (S̃ �
Ks) and very high substrate concentrations (S̃ � Ks) linear
kinetics can be assumed and the methods referred to above
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˜ = 0 :
∂S̃

∂x̃
= 0 (3)

˜ = L :

⎧⎨
⎩

S = S̃b Dirichlet condition or

∂S̃

∂x
= D

Lw
(S̃b − S̃) Mixed condition,

(4)

here S̃ is the substrate concentration in the biofilm, S̃b the bulk
oncentration and x̃ is the distance from the substratum. Here,
is the total area of biofilm in the CSBR, V the bulk volume,
the flow through the reactor, D the diffusion constant, Lw the

hickness of a liquid boundary layer and L denotes the biofilm
hickness. The void fraction in the biofilm is denoted ε and r is
he substrate uptake rate by bacteria. In this formulation S can
e a vector of substrates though, in the work presented here,
e only consider one substrate. However, the derived approxi-
ations are directly applicable to cases with several substrates
hen the kinetics is independent of each other, and if there is
nly one reaction and stoichiometric relations between the sub-
trates the same method to derive the approximations can be
sed.

The most straightforward solution to Eqs. (1) and (2) is to
iscretize both equations in time and approximate the space
erivative in Eq. (2) with finite differences, for example. Alter-
atively, the equations can be solved using the finite element
ethod. However, these approaches require a fine discretiza-

ion of the biofilm due to the large spatial variations of the
ubstrate concentration inside the biofilm. For many process-
ngineering purposes, such as system simulation and controller
esign, this makes the calculations too demanding or the model
f too high order. Since the main interest in these cases is
11,12] apply, but in many cases the nonlinear kinetics has
o be used [13]. For the steady state nonlinear case Sáez
nd Rittman [14] have developed a pseudo-analytical steady
tate solution, which is still the most widespread method used.
owever, for the nonlinear dynamic case that is the focus of

his study no simple and low order model is available in the
iterature.

We see that the Monod expression is only mildly nonlinear
n substrate concentration. It is therefore reasonable to believe
hat it should be possible to use only a few ODEs to approxi-

ate the system in a similar manner as in the linear cases [11].
ndeed, we will show how a few nonlinear first order ODEs,
hich may be solved with standard integration methods, can
e used as a sufficiently close approximation for the nonlinear
ase. The suggested approximation is achieved using the orthog-
nal collocation method after comparison with other Methods
f Weighted Residuals1 (MWR), such as the Galerkin and the
ubdomain methods (see e.g. [15]). All approximations are eval-
ated by comparison with simulations, using a high accuracy
nite element method (FEM), of step responses and responses

o random influent concentrations. These comparisons show that
or many parameter combinations the approximations are very
ccurate, making it possible to use only a second order state
pace model to approximate the system. Such low order models
re suitable for controller design, stability analysis and sim-
lation and optimization of systems having biofilm reactors.

1 In MWR, an approximate solution to the PDE is forced to satisfy the bound-
ry conditions and inserted into the PDE, hence creating a residual (error).
he residual is multiplied by weights, integrated with respect to space over the

egion of definition, and then set to zero. This creates a finite dimensional (ODE)
escription of the infinite dimensional (PDE) model.
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Examples of control applications where the approximations are
directly applicable are when the reactor effluent concentration is
controlled to follow a reference or setpoint by manipulating the
influent load. This can either be achieved by varying the flow
around an operating point or by changing the feed blend, such as
in the addition of highly concentrated reject water from activated
sludge presses to nitrifying reactors or the addition of an exter-
nal carbon source to denitrifying biofilm reactors. In the former
case a slightly modified definition of influent concentration has
to be used [11,12].

The stationary solution of the approximations can either be
used as they are or to generate initial values for dynamic sim-
ulations or for iterative methods to find stationary solutions of
more complicated models used in, for example, simulations of
the slow bacterial dynamics. A comparison with the pseudo-
analytical solution by Sáez and Rittman [14], shows that the
stationary approximations presented here are comparable and
even better for many common parameter combinations, though
less accurate for others. Note, however that the steady state
approximation method proposed here have the advantage of
being directly compatible with the dynamic approximations.
It also gives an estimated concentration profile inside film,
which can be used when the model is combined with biological
models [16,17] and is also illustrative for educational purposes
[18].

We now extend the mass balance (7) to −1 < x < 1. The
boundary conditions (8) then imply that the solution must be
symmetric around x = 0. We can therefore approximate the sub-
strate concentration inside the biofilm with a trial function of
even polynomials,

Ŝ(t, x) =
m∑

k=0

θk(t)P2k(x), (9)

where P2k are Legendre polynomials of order 2k (symmetric),
orthogonal on −1 ≤ x ≤ 1 and normed such that P2k(1) = 1. The
approximate bulk concentration we get by using this approxima-
tion in Eq. (6) is denoted S̃b. The next step of the MWR method
is to set the weighted residuals of Eq. (7) to zero, i.e. setting

∫ 1

−1
Wn(x)

(
∂Ŝ

∂t
− ∂2Ŝ

∂x2 + α
Ŝ

Ŝ + 1

)
dx = 0,

n = 0, 1, . . . , m (10)

where Wn(x) is a weight function that depends on the choice
of MWR method. For the orthogonal collocation method
Wn(x) = δ(x −xn), where xn are the zeros of a Jacobi polynomial,
while for the Galerkin method Wn(x) = P2n(x). In the subdomain
method, the region of definition for the PDE is divided into a
number of smaller regions (subdomains). The weights are cho-
2. Material and methods

We model a CSBR as a continuously stirred tank with bulk
volume V through which there is a flow Q of bulk liquid. The
influent substrate concentration is S̃b

in and the effluent con-
centration, which equals that in the bulk of the CSBR, is S̃b.
The substrate diffuses without transfer resistance into a biofilm
where the reactions take place, i.e. the Dirichlet condition in
Eq. (4) is used as boundary condition at the biofilm surface.
The substrate concentration (S̃) is assumed to be continuous
in time (t̃) and space (x̃). Further, the void fraction (ε) in the
biofilm, the substrate diffusion coefficient (D), and the thickness
of the biofilm are assumed constant. If the biofilm is homoge-
neous and the transport of substrates inside the biofilm obeys
Fick’s law of diffusion in one dimension, a CSBR is described by
Eqs. (1) and (2) in dimensionless form. These equations can be
written,

τ
d

dt
Sb = Sb

in − Sb − γ
∂S

∂x

∣∣∣∣
x=1

(6)

∂S

∂t
= ∂2S

∂x2 − α
S

S + 1
, 0 < x < 1 (7)

x = 0 :
∂s

∂x
= 0; x = 1 : S = Sb, (8)

where the substrate concentration has been scaled to
Sb = S̃b/Ks and S = S̃/Ks, τ = VD/(QL2ε), γ = AD/QL and
α = L2µmX/(KsDY). Space and time are scaled as x = x̃/L and
t = λt̃, where λ = D/(L2ε).
sen to be unity on each subdomain and zero everywhere else, i.e.
the integrated residual is set to zero on each subdomain. In this
study, the best approximation turns out to be the one achieved by
the orthogonal collocation method, which is therefore described
more in detail.

Forcing the approximation to satisfy the boundary condition
Ŝ(1, t) = Ŝb, setting the residuals of Eq. (7) to zero at m + 1
points, i.e. using Wn(x) = δ(x − xn) in Eq. (10) and inserting the
approximation Ŝ into Eqs. (6) and (10) give

m∑
k=0

θk = Ŝb (11)

0 =
m∑

k=0

⎧⎨
⎩P2k(xj)

d

dt
θk − θk

d2P2k

dx2

∣∣∣∣∣
x=xj

⎫⎬
⎭

+ α

∑m
k=0θkP2k(xj)

1 +∑m
k=0θkP2k(xj)

, j = 1, 2, . . . , m + 1 (12)

τ
d

dt
Ŝb = Sb

in − Ŝb − γ

m∑
k=0

θk

dP2k

dx

∣∣∣∣
x=1

(13)

where Ŝb, Ŝ, Ŝb
in and θk are functions of time t.

The algebraic equation (11) is used to eliminate one of the
differential equations in (12). This means that we only need
m collocation points. In this case, the m collocation points are
chosen as the positive roots of the Legendre polynomial P2m,
which is a special case of Jacobi polynomials. The resulting
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state space model can then be written as

m−1∑
k=0

d

dt
θkP2k(xj)

=
m−1∑
k=0

θk

(
d2P2k

dx2 − d2P2m

dx2

)∣∣∣∣∣
x=xj

+ Ŝb d2P2m

dx2

∣∣∣∣∣
x=xj

− α

( ∑m−1
k=0 θkP2k(xj)

1 +∑m−1
k=0 θkP2k(xj)

)
,

j = 1, 2, . . . , m (14)

d

dt
Ŝb = 1

τ
(Sb

in − Ŝb) − γ

T

(
m−1∑
k=0

θk

(
dP2k

dx
− dP2m

dx

)∣∣∣∣∣
x=1

+ Ŝb dP2m

dx

∣∣∣∣
x=1

)
(15)

For m = 1, the state space model can be written as⎧⎪⎪⎨
⎪⎪⎩

d

dt
θ0 = 3(Ŝb − θ0) − αθ0

1 + θ0
d

dt
Ŝb = 1

τ
(Sb

in − (1 + 3γ)Ŝb + 3γθ0)
(16)
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of node points were 305 with increasing density towards x = 1.
This was done by initializing a mesh by setting the maximum
general element size to 1/120, the maximum element size near
the vertex x = 1 to 1/4000 and the mesh growth rate to 1.3. The
mesh was then refined once. The rest of the solver settings had
default values.

The accuracy of the numerical results from the FEM calcu-
lations was verified by decreasing the number of node points to
half and also by increasing the absolute and relative tolerance
to 10−4 and 10−3 (or τ × 10−3). This had negligible effects on
the numerical results. As an example, the average error between
the FEM solution calculated with these conditions and the FEM
solution used in comparison with the MWR approximations was
less than 0.001% for a unit step response when α = 300, γ = 3 and
τ/γ = 10, the most difficult parameter combination investigated.

In a steady state, the ODE (6) can be eliminated and the PDE
(7) can be solved using FEMLAB in a quite straightforward
manner. The calculations are fast compared to the dynamic sim-
ulations and the error tolerances can be set to a value as low as
10−8.

To find the steady state approximations the equations were
solved using the MATLAB function fsolve. The tolerance was
set to the same value as for the FEM solution, i.e. 10−8. Also the
dynamic simulations of the approximations were carried out in
MATLAB, using one of the built in ODE solvers for stiff differ-
ential equations (ode23s). The error tolerances were set to the
s
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he stationary solution is determined by setting the time deriva-
ives of the above equations to zero.

If we use y = (Sb
in − Sb)/2γ the steady state for m = 1 is given

y

(y) = 2y − α

(
1 − 3

3(1 + Sb
in) − 2(1 + 3γ)y

)
= 0. (17)

fter solving for y, the stationary bulk concentration and the
oncentration in the biofilm follows from

b = Sb
in − 2γy (18)

(x) = Sb
in − (1 + 2γ)y + x2y. (19)

xpanding to m = 2, the state space model can be written as

d

dt
θ0 = 10(Ŝb − θ0) − 7θ1 + α

(
−1 + 0.6521

1 + θ0 − 0.3266θ1
+

d

dt
θ1 = 35(Ŝb − θ0 − θ1) + α

(
− 1.0652

1 + θ0 − 0.3266θ1
+

1 +
d

dt
Ŝb = 1

τ
(Sb

in − (1 + 10γ)Ŝb + 10γθ0 + 7γθ1)

lso for m = 2, it is possible to derive one single equation for the
teady state solution.

To estimate the approximation errors the MWR approxima-
ions are compared to high accuracy FEM solutions. The FEM
imulations were carried out in the software MATLAB (The

athworks Inc., Natick, MA, USA) using the toolbox FEM-
AB (Comsol Inc., Burlington, MA, USA). For the FEM solver

he absolute tolerance was set to 10−5 and the relative toler-
nce to τ × 10−4 when τ < 1 and otherwise 10−4. The number
0.3479

θ0 + 0.6123θ1

)
652

0.6123θ1

)
(20)

ame values as for the FEM simulation. The computational time
or simulating the approximations were small. For example, the
imulation time for a simple step response with m = 2 was about
.3 s on a Dell PC with Intel(R) Pentium(R) 4 CPU 2.00 GHz
rocessor. This should be compared to a FEM simulation time
f about 3 min.

The simulations were carried out for a number of differ-
nt combinations of the three model parameters α, γ and τ.
he parameter intervals were determined by calculating typi-
al parameter values for different types of reactors and biofilms
sing the expressions for α, γ and τ. From a parameter point of
iew two extremes of reactor types are trickling filters, with a
ery small ratio of bulk water volume (V) to water volume con-

ained in the biofilm (εAL), and moving beds, which have a very
arge ratio. In terms of biofilms, we have autotrophic biofilms
ith slow growth (substrate uptake rate) and thin biofilm, het-

rotrophic aerobic films with rapid growth and thick films, and
noxic heterotrophic films that can be thick though with a less
apid growth. The values presented here are example values for
hese biofilms and reactor types (see Table 1).
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Table 1
Model parameters

Substrate Aerobic growth autotrophs Aerobic growth heterotrophs Anoxic growth heterotrophs

NH4 O2 Alk NO2 COD O2 COD NOx

High rate trickling filters α 0.12 0.87 0.06 0.33 28 272 18 64
γ 0.25 0.29 0.15 0.22 0.14 0.29 0.14 0.22
τ 0.49 0.58 0.30 0.44 0.03 0.07 0.03 0.06
τ
γ

2.00 2.00 2.00 2.00 0.25 0.25 0.25 0.25

Moving bed bioreactors α 0.01 0.010 0.006 0.04 16 153 10 36
γ 10 12 6 9 0.35 0.73 0.35 0.56
τ 493 580 303 443 0.95 1.98 0.95 1.52
τ
γ

48 48 48 48 2.7 2.7 2.7 2.7

The dynamic simulations were run for all combinations of
α = 0.003, 0.03, 1, 30 and 300; γ = 0.1, 0.33, 1, 3 and 10;
τ/γ = 0.02, 0.1, 1, 10 and 50.

These combinations gave a total of 125 simulations covering
typical cases for all the considered biofilms and reactors. The
Monod expression used to describe the substrate uptake rate
is approximately linear at both high and low substrate concen-
trations. The maximum nonlinearity occurs for concentrations
around S = 1, which was the influent concentration Sb

in chosen
for all the dynamic simulations. The stationary solution was cal-
culated for Sb

in = 0.1, 1, 10 and the values of α and γ presented
above (the value of τ does not affect the steady state).

To estimate the approximation error, the MWR approxima-
tion and a FEM solution were compared. For the steady state
simulations, the relative error was calculated according to

erel = |Ŝb − Sb
FEM|

Sb
FEM

, (21)

where Sb
FEM is the FEM solution and Ŝb is the MWR solution.

As a measure of accuracy of the dynamic step responses, the
relative error was calculated as

erel =
∫ 5T

0 |Sb
FEM − Ŝb| dt∫ 5T

0 Sb
FEM dt

, (22)

w ˜

(
q

t
T
c
e
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3

3

a
(
t

Fig. 1. Random input concentration used for evaluation.

Increasing γ increases the relative error for a given α. For α > 1,
the error is significant when m = 1, though for m = 2 the relative
error is small even for α = 30. For α = 300 higher order approx-
imations are required. The pseudo-analytical solution, on the

Fig. 2. Diagram showing a comparison of the pseudoanalytical solution by Sáez
and Rittmann and the steady-state orthogonal collocation approximations for
Sb

in = 1. Use bottom diagram to find the parameter combination from the biofilm
reactor parameters α and γ .
here T is the scaled characteristic time T = (V + εAL)/Q
corresponds to T = τ + γ). The integrals were evaluated by
uadrature using the MATLAB function quad.

To evaluate how the system responds to an arbitrary input,
he response to a low pass filtered random signal was simulated.
he time scale for each parameter combination was scaled by the
haracteristic time of the system (see Fig. 1). Again, the average
rror was calculated as in Eq. (22) but integrated over the entire
nput interval.

. Results

.1. Steady-state models

Fig. 2 shows the relative error for the second order (m = 1)
pproximation (16) and the third order (m = 2) approximation
20), as well as the pseudo-analytical method [14]. For α < 1,
he error is negligible (erel < 10−4) for both m = 1 and m = 2.
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other hand, is extremely accurate for the highest simulated val-
ues of α, but when α ≤ 1 even the lowest order approximations
(16) in steady-state, i.e. (17), is more accurate.

Naturally, higher order approximations results in smaller
errors. However, it takes a seventh order approximation to
achieve a maximum error less than 0.1%, and a sixth order
approximation to have a maximum error less than 1% for all
parameter combinations. For α = 30 it is more worthwhile to
extend the state space model to a higher order. The maxi-
mum error when m = 2 is then 5.8%, while for m = 3 it is only
0.14%.

Fig. 3 shows the dependency on influent concentration. The
errors decrease when Sb

in is increased. The dependency on the
influent concentration for m = 1 is similar to that of m = 2.

3.2. Dynamic models

Fig. 4a shows the relative error (22) for the step responses of
the orthogonal collocation approximation. For many parameter
combinations the approximations are very accurate. When m = 2
and α ≤ 1 the errors are never more than 0.6%. If we also require
τ not to be less than 0.1, the error is less than 0.05%. Smaller
errors cannot be expected with the tolerances used. The error
decreases with τ and increases with γ .

The second order (m = 1) approximation (16) is satisfactory
f
m
t
o

Fig. 3. Influent concentration dependency of the relative error for the steady-
state orthogonal collocation method when m = 2. Use bottom diagram to find the
parameter combination from the biofilm reactor parameters α and γ .

Fig. 4b shows the relative error for the response to the random
influent concentration. The plot very much resembles that of a
step response in that the large errors occur for the same parameter
combinations. For the third order (m = 2) approximation (20) the
errors are less than 1.8% when α ≤ 1.

For comparison, the results using the Galerkin approxima-
tion with m = 2 are also shown in Fig. 4b. As can be seen, the
difference between the two approximation methods is negligible
except for a few parameter combinations. The orthogonal col-

F
f

or most applications when α ≤ 1. When α ≤ 1 and τ > 0.1 the
aximum error is 1.1%. Errors of the higher order approxima-

ions were also analyzed. The differences between the different
rder approximations are particularly significant when α ≥ 1.
ig. 4. (a) Relative error of the orthogonal collocation method for step responses. (b
or responses to random influent concentrations. Use bottom diagram to find the para
) Relative error of the orthogonal collocation method and the Galerkin method
meter combination from the biofilm reactor parameters α, γ and τ (τ/γ).
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Table 2
Number of collocation points (m) needed for unscaled model

erel < 1% erel < 3% erel < 10%

α ≤ 0.03 1 1 1
α ≤ 1 3 2 1
α ≤ 30 3 3 2
α ≤ 300 5 5 4

Table 3
Number of collocation points (m) needed for scaled model

erel < 1% erel < 3% erel < 10%

α ≤ 0.03 1 1 1
α ≤ 1 3 2 1
α ≤ 30 3 2 1
α ≤ 300 4 2 1

location method is actually slightly better where the errors are
significant. The same conclusions could be drawn for m = 1 and
also for the step response simulations.

Table 2 shows what model order is needed to get a maximum
error less than 1, 3 and 10% for different values of α. The results
from the random input responses are presented since these errors
are over all somewhat higher than those from the step responses.
The large errors for high values of α are clearly a consequence of
the approximation steady state gain being inaccurate, as shown
in Fig. 2.

The dynamic behavior, however, may still be satisfying. To
be able to evaluate the dynamic behavior without the influence of
the gain error, the step responses and the random input responses
were divided by the steady state concentration at cb

in = 1, and
new errors were calculated. The results from these simulations
show that the low order approximations describe the dynamic
behavior of the system quite well. For m = 1, the maximum rela-
tive error is 6.8%. For most parameter combinations the error is
significantly smaller. The corresponding number for the third
order (m = 2) approximation is 2.8%. The largest errors still
occur when α = 300. Table 3 shows what model order is needed
to get a maximum error less than 1, 3 and 10% for the scaled
model.

4. Discussion
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the results do not motivate the use of these approximations the
results are not presented in detail here.

The results from steady-state simulations as well as dynamic
simulations clearly show that the approximation error increases
with α. This is not surprising since α is the factor that deter-
mines the emphasis of the nonlinear term in the biofilm Eq.
(7). Obviously, it makes it harder to find a satisfying low
order approximation for the model when α has a high value.
Also, simulations with low values of τ will give larger errors
than simulations with high values. The reason is that when
τ is small the concentration in the biofilm, which is where
the approximation take place, has more influence on the bulk
concentration.

The stationary approximations can either be used as they are
or to generate initial values for the dynamic approximations,
or iterative methods to find stationary solutions of more com-
plicated models used in, for example, simulations of the slow
bacterial dynamics. A comparison with the pseudo-analytical
steady state solution shows that the stationary approximations
presented here are more accurate for α ≤ 1, but less accurate for
high values of α. However, the approximations derived here have
the advantage of being directly compatible with the dynamic
model of the same order.

Simulations of step responses and responses to a random
influent concentration show that a second order state space
model is enough to describe systems with low reaction rates and
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The orthogonal collocation method has the advantage of
voiding the integral calculation (10), which in this case becomes
ather difficult for the Galerkin and subdomain methods as m
rows large. Instead, the residual is evaluated at a number of
iscrete points. It can be shown that there is a strong connec-
ion between the optimal collocation method and the Galerkin
ethod, which in general is regarded as the most accurate MWR

pproximation [19]. The subdomain method results in approxi-
ations that are very similar to the ones achieved in the Galerkin
ethod and for m = 1 the methods are identical. In this paper,
e have therefore concentrated on the approximations derived
sing the orthogonal collocation method. Galerkin and subdo-
ain approximations have been simulated as well but since
arge bulk volume compared to the biofilm liquid volume. This
eans that the ODE (6) and the PDE (7) are replaced by only two
rst order ODEs (16). However, as already mentioned, for high
-values (high reaction rates) or low values of τ (small ratio of
ulk volume to biofilm void volume) the second order approxi-
ations are in many cases not accurate enough. For high values

f α, it is mainly the stationary gain that is inaccurate. In such
ases, if a low order approximation is desired, we recommend
alculation of the steady state solution for the actual operat-
ng point with some other method, e.g. the pseudo-analytical
olution, and a correction of the state space model by this sta-
ionary solution. Simulations of step responses and random input
esponses divided by the stationary gain give a maximum error
f about 8% for the second order approximations and 3% for the
hird order approximations.

The third order state space models (20) are naturally better
han the second order models, but they show the same depen-
ency on the parameters. For high values of α and low values
f τ the error grows very large. Which order approximation
ne should use is, of course, a matter of how accurate the solu-
ion needs to be. For the fifth order model the maximum error
f the random input response is less than 5%, which would
e accurate enough for most control applications. The maxi-
um error of the sixth order model is as low as 0.5% and an

pproximation of that order should be sufficient in almost any
pplication.

Examples of reactors for which the low order approximations
re satisfying are reactors with aerobic growth of autotrophs,
ince for such biofilms α < 1 and τ > 0.1. If the reactor is a moving
ed bioreactor (τ > 100) even the lowest order approximation
16) is very accurate.
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4.1. Uniqueness

Two properties of a nonlinear dynamic system are particularly
important, i.e. stability of steady state operation (equilibrium
points) and the uniqueness of such an operating point. Many
bioreactors exhibit multiple steady states, i.e. depending on the
initial conditions the system may end in different operating
points for a given stationary operation. The question is there-
fore, does the CSBR system have multiple steady state or not,
and does the approximation have the same property?

In a steady state, the time derivative is zero and we can solve
Eq. (7) analytically with respect to dS/dx by integration from
the biofilm substratum to the surface. Using Eq. (7) in a steady
state, and denoting the first and second derivative of S by S′ and
S′′, we have∫ 1

x=0
S′′S′ dx = α

∫ 1

x=0

(
1 − 1

S + 1

)
S′ dx

= α[S − ln(S + 1)]1
x=0

Using the boundary conditions S′(0) = 0 and S(1) = Sb we also
have

∫ 1
0 S′′S′ dx = S′(1)2/2, which gives

dS

dx

∣∣∣∣
x=1

=
√

2α(Sb − S(0)) − α ln

(
Sb + 1

S(0) + 1

)
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0

0 ≤ Ŝ(0) = 1.5θ0 − 0.5Ŝb (24)

0 ≤ dŜ

dx

∣∣∣∣∣
x=1

= 3(Ŝb − θ0) (25)

In a steady state, θ0 = Ŝb + (Ŝb − Sb
in)/3γ . With the inequalities

above this implies that a physically realistic solution should be
expected in the interval Sb

in/(1 + 2γ) ≤ Ŝb ≤ Sb
in.

It can be shown that there is a unique steady state solution to
Eq. (17) in the interval (Sb

in − 3γ)/(1 + 3γ) < S̄b < Sb
in. Notice

that the expected interval is contained in this somewhat larger
interval. According to Eq. (18) this interval translates into 0 <

y < 3(1 + Sb
in)/(2(1 + 3γ)). Investigating Eq. (17) at the end

points of this interval, we have

lim
y→0

f (y) = −α
Sb

in

1 + Sb
in

< 0

and

f (y) → ∞, when y → 3(1 + Sb
in)

2(1 + 3γ)
.

Since f(y) is a continuous function on the interval there exists,
therefore, at least one solution to Eq. (17). The derivative of f(y)
is

d
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2(1 + 3γ)
)
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nserting this in Eq. (6) in a steady state gives

b
in − Sb − γ

√
2α(Sb − S(0)) − α ln

(
Sb + 1

S(0) + 1

)
= 0

r

(Sb
in − Sb)

2

2γ2α
− Sb + ln(Sb + 1)

= −S(0) + ln(S(0) + 1) < 0, ∀S(0) > 0

he right hand side is strictly monotonically decreasing in S(0)
or all α and γ and, hence, for every stationary bulk concentration
b and Sb

in there can only be one unique concentration S(0) at
he substratum. Now, given a S(0) and the boundary condition
S/dx = 0 at x = 0 Eq. (7) can be regarded as an initial value
roblem

d

dx

[
S(x)

S′(x)

]
=
⎡
⎣ S′(x)

α
S(x)

S(x) + 1

⎤
⎦ ,

hich satisfies a Lipschitz condition with a Lipschitz constant
1 + α2 (see e.g. [20]). This means that the initial value prob-

em has a unique solution and, consequently, the CSBR system
nvestigated here have only unique steady state solutions.

We will now show that all equilibrium points of the approxi-
ation (17) in the relevant interval are also unique, i.e. it is never

ossible to find more than one physically acceptable solution.
For the second order steady state approximation (m = 1) the

ollowing should hold:

≤ Ŝb ≤ Sb
in (23)
dy
f (y) = 2 + 3α

(3(1 + Sb
in) − 2(1 + 3γ)y)

2 > 0,

hich is strictly positive. This implies that f(y) is strictly mono-
onically increasing on the interval and, hence, the solution is
nique.

.2. Nonorthogonal collocation

Several comparisons with other MWR methods for different
roblems have shown that the orthogonal collocation approxi-
ation often is the most accurate and reliable collocation method

15,19]. In most of the studied cases, however, the purpose is to
nd an approximation of a single differential equation. In this
ase, we have two coupled equations and we are mainly inter-
sted in the bulk concentration, which is affected by the biofilm
oncentrations only by the concentration gradient at the biofilm
urface. Hence, it is not obvious that the roots of orthogonal
olynomials are the best choice of collocation points.

For the second order approximation (m = 1) no collocation
oints are needed since the system is fully determined by the
wo boundary conditions. For higher order approximations the
hoice of collocation points may make a significant difference.
possibility is that the concentration gradient at the biofilm sur-

ace is best approximated by having collocation points near that
urface. This was tested by simulating step responses for m = 2
ith collocation points x1 = 0.95 and x2 = 0.99. The orthogonal

ollocation method (x1 ≈ 0.34 and x2 ≈ 0.86) gave significantly
etter results, especially for α = 1. The combination of one col-
ocation point near the surface x2 = 0.99 and one in the middle
f the biofilm x = 0.5 showed again that orthogonal collocation
s better.
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Table 4
Influence of a liquid boundary layer on the relative error of a step response

α = 1, γ = 0.1, τ = 0.1 α = 1, γ = 0.33, τ = 0.33

m = 1
Lw = 0.5L 0.0032 0.0017
Lw = 0 0.0110 0.0037

m = 2
Lw = 0.5L 9.30 × 10−5 3.80 × 10−5

Lw = 0 4.75 × 10−4 7.57 × 10−5

4.3. Diffusion layer on the biofilm surface

The simulations that have been presented so far do not take
into account the effects of a boundary layer on the surface of
the biofilm. If a boundary layer has developed, the boundary
condition of the model becomes a mixed condition instead of
a Dirichlet condition and the resulting approximations become
somewhat modified. It is not obvious how this affect the accuracy
of the approximations compared to the FEM solution. To get
some idea about this, step response simulations were carried out
for two different parameter combinations. In these simulations
the model that takes the effect of a liquid boundary layer into
account has been used, i.e. the mixed condition in Eq. (4) was
taken as the boundary condition.

The thickness of the liquid layer, Lw, was supposed to be
around half of the total bulk thickness V/A. For a high rate trick-
ling filter with aerobic growth of autotrophs the bulk thickness
is typically equal to the biofilm thickness, V/A = L. The values of
α, γ and τ were chosen among those that have been used in the
previous simulations and that are close to the typical values for a
high rate trickling filter with aerobic growth of autotrophs. The
following parameter combinations were chosen: α = 1, γ = 0.1,
τ = 0.1, and α = 1, γ = 0.33, τ = 0.33.

In Table 4, the errors for the chosen parameter combinations
are shown together with the errors calculated when the effect
of the boundary layer was ignored, i.e. L = 0. The results are
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Galerkin method. It gives simpler expression and in this case
equal or higher accuracy.

It was shown that the system have only unique steady-state
solutions.For the second order orthogonal collocation approxi-
mation it has been shown also the approximation has a unique
steady state in a domain containing the domain where we
expect the solution to be. This stationary solution can be found
by solving one single equation. It was shown that the steady
state approximations derived here are more accurate than the
pseudo-analytical steady state solution by Sáez and Rittman
[14] for α ≤ 1 but less accurate for higher values of α. How-
ever, the approximations we suggest have the advantage of
being directly compatible with the dynamic solution, which the
pseudo-analytical method cannot be.

Simulations show that the second order state space model
(16) is enough to describe systems with low reaction rates and
large bulk volume compared to the biofilm liquid volume. An
example of such a system is a moving bed bioreactor with aero-
bic growth of autotrophs. For high α-values (high reaction rates)
or low values of τ (bulk volume small compared to biofilm liq-
uid volume) the lowest order approximations are not accurate
enough. The higher order the more accurate the approximation,
but considering the relatively large uncertainties in biological
systems, a model order of three is still enough for most cases.
A sixth order approximation should be sufficient in almost any
application. Which order of the approximation one should use
d
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s
s
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R

w
nambiguous. The errors are at least halved when the effect of
he boundary layer is considered. Hence, it is likely that the
esults derived in the previous sections can be applied to cases
here a liquid boundary layer has developed. The reason for the
igher accuracy in the case of a liquid boundary layer is probably
he fact that the mixed boundary condition makes the ODE for
he bulk and the PDE for the biofilm more weakly coupled.

. Conclusion

Low order approximations describing the fast dynamics of
ontinuously stirred biofilm reactors have been derived. The
pproximations were evaluated by comparison with high accu-
acy solutions derived with finite element method (FEM). Stan-
ard assumptions were made for the biofilm and Monod kinetics
sed to describe the substrate uptake rate. The resulting approx-
mations are state space models consisting of only a few first
rder ODEs, which were derived using orthogonal collocation,
ee Eqs. (16) and (20). The orthogonal collocation method has
few advantages compared to other MWR methods, such as the
epends on the desired accuracy. How many equations that are
eeded in the model to achieve a certain accuracy in the approx-
mation is summarized in Tables 2 and 3.

For high values of α it is mainly the stationary gain that is
naccurate. If α � 1 and a low order approximation is desired,
he steady state solution for the actual operating point should
e calculated by some other method, e.g. the pseudo-analytical
olution, and the state space model corrected by this stationary
olution. The accuracy is then improved such that a second or
hird order model is sufficient for most control and simulation
pplications.

eferences

[1] M.A.S. Chaudhry, S.A. Beg, A review on the mathematical modeling of
biofilm processes: advances in fundamentals of biofilm modeling, Chem.
Eng. Technol. 21 (9) (1998) 701–710.

[2] T. Wik. On Modeling the Dynamics of Fixed Biofilm Reactors with
Focus on Nitrifying Trickling Filters. PhD Thesis, Chalmers University
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