ANKET, GÜVENİLİRLİK -GEÇERLİLİK ANALİZİ

PROF.DR.YÜKSEL TERZİ

ONDOKUZ MAYIS ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ SAMSUN 2019

2. DOĞRULAYICI FAKTÖR ANALİZİ-DFA

DFA ölçek geliştirme ve uyarlama sürecinde Açımlayıcı Faktör Analizi ile belirlenmiş olan bir modelin ya da yapının test edilmesi veya doğrulanıp doğrulanmadığının incelenmesine dayanır. DFA önceden belirlenmiş olan yapının sınanmasını veya geliştirilmiş bir ölçme aracının faktör yapısının orijinal formu ile uyarlanmaya çalışıldığı kültürde tutarlılık gösterip göstermediğinin belirlenmesi amaçlanmaktadır.

DFA başka kültürlerde ve örneklemlerde geliştirilmiş ölçme araçlarının uyarlanmasında kullanılan bir geçerlilik belirleme yöntemidir. Ölçek uyarlama çalışmalarında kullanılan DFA önceden yapı geçerliliği sınanmış olan bir ölçeğin bu yapısını uyarlanmak istenilen dil ve kültürde de koruyup korumadığını test etmenin en iyi yoludur. DFA ölçek uyarlama çalışmalarında başvurulması gereken bir çalışmadır.

DOĞRULAYICI FAKTÖR ANALİZİ-DFA

Modelin uygunluğunun sınanmasında gözlenen değişkenler arasındaki kovaryans ile modelde önerilen parametreler arasındaki kovaryans matrisi arasındaki farkın, diğer bir deyişle hatanın derecesi temelinde geliştirilmiş olan mutlak uyum indeksleri de kullanılmaktadır.

DFA Lisrel ve AMOS gibi programlarda yapılabilmektedir.

Yapı geçerliliği için faktör yapılarını belirlenmesinde doğrulayıcı faktör analizi (DFA) kullanılır.

Doğrulayıcı faktör analizi daha önceden belirlenmiş bir yapının doğrulanmasını test etmek amacıyla gerçekleştirilir (Şimşek, 2006). Bu süreçte modelin elde edilen veriyi ne kadar iyi açıkladığı uyum iyiliği indeksleri ile belirlenir. Uyum iyiliği testleri modelin kabul ve reddedilme kararının verilmesini sağlar.

Ki-kare oluşturulan modelin veri tabanına mutlak uygunluğunu değerlendiren önemli bir testtir (Bollen, 1989). Ki-kare testi örneklem büyüklüğüne duyarlıdır ve örneklem sayısı 200'ün üstüne çıktığında genellikle güvenilir sonuçlar vermemektedir (Schumacker ve Lomax, 1996). Bu testte normal ki-kare testinin tersi olarak ki-kare değerinin mümkün olduğunca düşük olması arzulanır. Serbestlik derecesi de ki-kare testinde önemli bir ölçüttür. Serbestlik derecesinin büyük olduğu durumlarda ki-kare anlamlı sonuçlar vermektedir. Bu test ki-kareyi daha az örnek büyüklüğüne bağımlı hale getiren bir yöntem olup ki-karenin serbestlik derecesi bölümünden elde edilir. Bu değerin 3'ten küçük olması beklenir (Ayyıldız ve Cengiz, 2006).

Genel Olarak Doğrulayıcı Faktör Analizinin Aşamaları

DFA VE AFA ARASINDAKİ TEMEL FARKLAR

AFA ile hızlı bir şekilde maddelerin gireceği alt boyutu ve birden fazla boyuta giren maddeleri görebilir ilgili değişiklikleri yaparak modeli veriye göre oluşturabiliriz. Bu durum AFA'nın en önemli özelliğidir. DFA'nın en önemli özelliği ise bizim kafamızdaki modele verinin uyup uymamasının incelenmesidir (Schumacker and Lomax 2004). Yani AFA 'da uygun modeli kısa sürede oluşturabiliriz fakat bu modelin bilimsel bir açıklaması olmalıdır. Örneğin bir maddenin girdiği alt boyutun teorik olarak da o alt boyuta uygun olması gerekir. AFA ve DFA arasındaki temel farklar aşağıda açıklanmaya çalışılmıştır. ile hızlı bir şekilde maddelerin gireceği alt boyutu ve birden fazla boyuta giren maddeleri görebilir ilgili değişiklikleri yaparak modeli veriye göre oluşturabiliriz. Bu durum AFA'nın en önemli özelliğidir. DFA'nın en önemli özelliği ise bizim kafamızdaki modele verinin uyup uymamasının incelenmesidir (Schumacker and Lomax 2004). Yani AFA 'da uygun modeli kısa sürede oluşturabiliriz fakat bu modelin bilimsel bir açıklaması olmalıdır. Örneğin bir maddenin girdiği alt boyutun teorik olarak da o alt boyuta uygun olması gerekir.

DFA VE AFA ARASINDAKİ TEMEL FARKLAR

1. DFA 'da araştırmacı ölçekte kaç alt boyut (faktör) olacağını kesin olarak bilmelidir. Hangi maddelerin (gözlenen değişken) hangi alt boyutta olduğuna yine araştırmacı kurduğu modelle karar verir. AFA 'da ise araştırmacı maddelerin hangi alt boyuta girdiğini ve alt boyut sayısını sadece gözlemler (Schumacker ve Lomax 2010). Araştırmacı eğer isterse alt boyut sayısını sınırlayabilir.

2. DFA'da, kesin olarak ölçülmek istenen şey için teorik alt yapı gerekir. AFA 'da ölçeğin yapısı için her ne kadar teorik alt yapı gerekse de maddeleri ve alt boyutları AFA belirler.

3. DFA'da birden çok uyum indeksi ve faktör yüklerinin bileşimi modelin uygunluğunu belirler. AFA 'da genelde sadece faktör yüklerine bakarak karar verilir.

ANAHTAR SÖZCÜKLER

Gözlenen Değişken (Observed variable): Bireye ait bir özellik hakkında etkisi incelenen değişkendir. Madde ya da gösterge olarak da adlandırılır.

Gizil Değişken (Latent variable): Birden fazla gözlenen değişkeni etkileyen ve bu gözlenen değişkenler arasındaki ilişkiyi açıklamaya çalışan gözlenemeyen bir değişkendir. Gözlenen değişkenler ortak bir nedeni paylaşmalarından dolayı bir araya gelirler ve bu kümenin geneli gizil değişken olarak adlandırılır (Brown, 2006).

Dışsal Değişken (Exogenous variable): Bağımsız değişken olarak da adlandırılır. Yol şemasında temel başlangıç ya da yordayıcı değişkenlerdir ve modelin şemasal görünümünde sol tarafta yer alırlar.

İçsel Değişken (Endogeneous variable): Bağımlı değişken olarak adlandırılır. Yol şemasında yordanan (aracı değişken-ler) değişkenlerdir. Modelin şemasal görünümünde dışsal değişkenlerin sağında yer alır.

ANAHTAR SÖZCÜKLER

Doğrudan etki (Direct effect): Bir değişkenin bir başka değişkeni tek yönlü bir yolla etkilediği varsayımıdır (Kline, 2011).

Dolaylı etki (Inderect effect): Dışsal bir değişkenin içsel bir değişkene olan etkisinin bir ya da daha fazla aracı değişkenle ortaya konulmasıdır.

Karşılıklı etki (Reciprocal effect): İki değişken arasındaki iki yönlü etkidir.

Ölçme modeli (Measurement model): Bir gizil değişken ve göstergelerinden oluşan yapıya denir. Bir gizil değişkenli doğrulayıcı faktör analizi modeli ile aynı anlamda kullanılır.

Yapısal model (Structural model): Gizil değişkenleri birbirine eşzamanlı eşitlik sistemleri bağlayarak oluşturulan modele denir.

ANAHTAR SÖZCÜKLER

Yol şeması-diyagramı (Path Diagram): Faktörlerle ilişkili olduğu varsayılan değişkenleri göstermek amacıyla kullanılabilir. Yol şeması bu nedenle faktörler arasındaki ilişkilerin kurulmasını sağlar ve gözlenen değişkenlerin hangi faktörler altında tanımlanacağını gösterir (Schumacker ve Lomax, 1996).

Hata varyansı (Error variance): Veri setine ilişkin varyansın açıklanamayan kısmını gösterir.

Modifikasyon İndeksi (Modification Index): Gösterge ve gizil değişkenler arasındaki kovaryansa temelinde, modele ilişkin ayrıntılı modifikasyonlar önerir. Bu modifikasyonlar genellikle hata matrisleri temelinde oluşturulur ve modelde orijinal olarak öngörülmeyen, ancak eklenmesi ya da çıkarılması durumunda modelde kazamılacak ki-kare değerini gösterir.

LISREL yazılımı Jöreskog ve Sörbom tarafından geliştirilmiş bir programdır. LISREL yazılımının ismi Linear Structural Models 'in kısaltımıdır. LISREL'in içinde iki program/modül vardır. Bunlardan birisi PRELIS, diğeri LISREL'dir. PRELIS verinin etkili bir şekilde gözden geçirilmesine ve tanımlayıcı bilgilerin incelenmesine olanak verir. Veriyi LISREL'de analize uygun hale getirmek için gerekli olan tüm işlevleri yapar. LISREL ise, PRELIS tarafından oluşturulan veriyi test etmekte kullanılır (Jöreskog and Sörbom 1999).

LISREL'de veri çözümlerken, hiçbir aşamada Türkçe karakter kullanılmamalıdır. Analiz edilen veri tabanını bir klasöre kopyalanıp orada başlanması gerekir. İleride analiz tekrar yapılıp sonuçların kontrol edilmesi istenirse, başka klasöre aktarılan LISREL 'e ait dosyalar program tarafından okunmamaktadır. Bu nedenle analiz işlemi tamamen bitinceye kadar dosyalar kopyalanan klasörde kalmalıdır

LISREL 'de analize başlarken ilk adım SPSS veya EXEL 'de oluşturulmuş veri tabanını LISREL 'e aktarmaktır. "Import" komutu ile dosya LISREL 'e aktarılır. Dosya import ederken SPSS ile önceden oluşturulmuş veri setinden ölçek maddeleri hariç tüm değişkenler silinmelidir. LISREL sütun hesabına göre çalıştığından yaş, ekonomik durum gibi ölçek maddeleri haricindeki (demografik değişkenler gibi) tüm sütunların çıkarılması gerekmektedir (Çokluk, Şekercioğlu ve Büyüköztürk 2010). Bu aşamadan sonra verinin süreklimi, kategorik mi olduğunun tanımlanması gerekir. Bunun için veri (data) penceresinden "Define Variable" seçilir ve veri türü seçilerek tüm değişkenlere uygula "Apply All Variable" tıklanarak onaylanır. Daha sonra kaydet butonu ile kaydedilerek değişiklikler aktif hale getirilir. Sonraki aşama matrisin oluşturulmadır. "Statistics" menüsünden "normal scores" tıklanır ve açılan pencereye ölçek maddeleri atılır, daha sonra "output options"tan matrisin tanımlanması işlemi gerçekleşir. Eğer covaryans matrisi kullanılacaksa dosya adına .COV uzantısı verilir. Korelasyon matrisinde ise .COR uzantısı verilir. Pencereler onaylanarak matrisin oluşturulması sağlanır (Çokluk, Şekercioğlu ve Büyüköztürk 2010). Hangi matrisin seçilmesine karar verirken bu makalede "DFA 'da Kullanılan Matris Türleri" başlığında yer alan bilgiler dikkate alınır.

Daha sonraki aşama söz dizim (syntax) dosyasının oluşturulmasıdır. SPSS den farklı olarak LISREL'de söz dizim (syntax) dosyası oluşturulur (Çokluk, Şekercioğlu ve Büyüköztürk 2010). New menüsünden "syntax only" sekmesi tıklanır. Açılan sayfaya syntax yazılır. PATH diyagramı çizildikten sonra syntax'ın otomatik yazdırılması yapılabilir. LISREL bu söz dizimini otomatik oluşturur ve analizini oradaki komutlara göre yapar, bazen araştırmacının bu söz dizimi incelemesi ve doğruluğunu teyit etmesi gerekir. Söz dizimi bittikten sonra dosya çalıştırılır ve sonuçlar incelenerek model hakkındaki yargıya varılır. PATH diyagramında görsel olarak maddelerin t değerleri, faktör yükleri, x2, sd, RMSEA gibi gerekli bilgiler okunabilir. Ayrıca output dosyasından daha detaylı bilgiler olan tüm uyum indeksi sonuçlarına ulaşılabilir.

PATH Diyagramı

Yapısal eşitlik modelinde analizler soncunda yol şemaları (path diagrams) elde edilebilmektedir. Uygun matris oluşturulduktan sonra uyum indeksleri ve analizi yapan yazılımın çıktı sayfası haricinde bir PATH diyagramı çizdirilerek modele ait değişkenler, t değerleri, faktör yükleri, açıklanamayan varyans ve bazı uyum iyiliği değerleri bu diyagramda özet olarak görülebilir. Bu şemalar kısaca modele ait çıktıları grafiksel olarak sunar (Gatignon 2011). PATH diyagramında görülmeyen detaylı analiz sonuçları Lisrel programına ait çıktı sayfasında görülebilmektedir.

PATH Diyagramı İçin Şekiller ve Semboller

Gözlenen değişken, araştırmacı tarafından ölçülen değişken

Gizil (latent) değişken, gözlenemeyen veya varsayımsal yapı

Doğrudan etki (Direct effect), X 🛛 Y X'in Y'yi tek yönlü bir yolla etkilediği varsayılır.

Korelasyon ya da kovaryans, iki değişken arasında ortak değişkenliğin olduğu varsayılır.

DOĞRULAYICI FAKTÖR ANALİZİ

Input Matrix (10 elements)

	X1	X2	ХЗ	X4
X1	σ ₁₁			
Х2	σ_{21}	σ_{22}		
ХЗ	σ_{31}	σ_{32}	σ_{33}	
X4	σ_{41}	σ ₄₂	σ_{43}	σ_{44}
eelv	Estimated	Model Pa	rameters	8 = 8

Freely Estimated Model Parameters = 8 (e.g., 4 factor loadings, 4 error variances)

Uygun bir ölçme modelinde faktör yüklerinin yüksek, hata varyanslarının düşük, faktör korelasyonlarının 0,85'den küçük olması beklenir. Faktör korelasyonlarının 0,85'i geçmesi ise aslında daha az faktörle model veri uyumunun sağlanabileceğini ve varlığı iddia edilen faktörlerin birbirinden ayrı kavramlar olmadıkları düşünülür.

PATH diyagramı çizdirildikten sonra ilk iş olarak maddelerin t değerleri kontrol edilir. Tablo t değeri 1.96'yı aşarsa 0.05, 2.56'yı aşarsa 0.01 düzeyinde anlamlıdır. Anlamsız olanların ölçekten çıkarılması gerekir (Şimşek 2007; Schumacker and Lomax 2010). Elimizdeki modelde tüm maddelere ait t değerlerinin anlamlı olması modelin kabul edilebilir olması için gerekli bir koşuldur. Maddelerin hata varyansları da t değerinin yanı sıra incelenmelidir. Hata varyansı çok yüksek olan maddelerin açıklayıcılıkları da düşük çıkacaktır. Eğer birden fazla maddenin t değer ya da hata varyansı olumsuzsa maddeler teker teker atılıp sonuçlara bakılarak çıkarılmalıdır (Şimşek 2007). Uyum indekslerinin de t değeri ve hata varyansı gibi uygun olması gerekir. Çıktılarda olumsuz sonuçlar var ise, modifikasyonlar değerlendirilir. Birden çok modifikasyon uygulanacak ise teker teker yapılmalıdır (Çokluk, Şekercioğlu ve Büyüköztürk 2010). Harrington'un (2009) aktardığına göre, faktör yüklerinin 0.30'un altında olmaması istenir. 0.71 ve üzeri mükemmel, 0.63 çok iyi, 0.55 iyi, 0.45 güzel/kabul edilebilir ve 0.32 zayıftır. Bu işlemlerden sonra en son sonuç sayfası ve PATH diyagramı incelenerek modelin uyumuna karar verilir. Bu karar verme işleminde makalede anlatılan uyum iyiliği sonuçları, faktör yükleri, t değeri gibi faktörler dikkate alınır (Çapık, 2014).

χ^2/sd Değeri:

Doğrulayıcı faktör analizi sonuçlarına göre öncelikle p değerinin incelenmesi gerekmektedir. Bu değer, beklenen kovaryans matrisi ile gözlenen kovaryans matrisi arasındaki farkın manidarlığı hakkında bilgi vermektedir. Örneklemin büyük olması sebebiyle p değeri manidar çıkmaktadır. Bu yüzden genellikle p değerinin manidar olması pek çok çalışmada tolere edilmektedir.

Ki-kare istatistiği örneklem büyüklüğünden çok çabuk etkilendiği için örneklemden daha az etkilenen χ^2 /sd oranı bunun yerine kullanılabilecek bir ölçüttür (Şimşek 2007; Waltz, Strcikland and Lenz 2010). χ^2 değerinin serbestlik derecesine bölünmesiyle elde edilen bu değer iki veya altında olmalıdır. Beş ve daha az ise kabul edilebilir bir değerdir (Munro 2005; Şimşek 2007; Hooper and Mullen 2008).

 $0 < \chi^2/sd <= 2$ mükemmel uyum vardır. $2 < \chi^2/sd <= 3$ kabul edilebilir düzeyde bir uyum vardır (Kline, 2005). $3 < \chi^2/sd < 5$ Orta düzeyde bir uyum vardır (Sümer, 2000).

RMSEA (Root Mean Square Error of Approximation): Tahminin Kök Hata Kareler Ortalaması

Ana kütledeki yaklaşık uyumun bir ölçüsüdür. Yaklaşık ortalamaların karekökü anlamına gelir. Sıfır ve bir arasında değer alır (Munro 2005; Yılmaz ve Çelik 2009; Çokluk, Şekercioğlu ve Büyüköztürk 2010; Schumacker and Lomax 2010).

Modelin anlamlılığı:

0<RMSEA<0.05 Normal değer 0.05<RMSEA<0.08 Kabul edilebilir uyum

GFI (Goodness of Fit Index): Uyum iyiliği indeksi

Modelin örneklemdeki kovaryans matrisini ne oranda ölçtüğünü gösterir (Çokluk, Şekercioğlu ve Büyüköztürk 2010; Waltz, Strcikland and Lenz 2010).

GFI, varsayılan modelce hesaplanan gözlenen değişkenler arasındaki genel kovaryans miktarını gösterir. Regresyon analizindeki *R*² gibi açıklanabilir. Örnek hacminin çok olması GFI değerini yükselterek doğru sonuç alınmasını önleyebilir. GFI değeri 0 ile 1 arasında değişir. GFI'nın 0.90'ı aşması iyi bir model göstergesi olarak alınmaktadır. Bu gözlenen değişkenler arasında yeterince kovaryansın hesaplandığı anlamına gelmektedir (Munro 2005; Waltz, Strcikland and Lenz 2010). GFI, iki modelin göreli uyum eksikliğini karşılaştırmaktan çok, toplam varyansa göre açıklanan kovaryansla ilgilenmektedir.

0.95<=GFI<1=.00 Normal değer 0.90<=GFI<0.95 Kabul edilebilir değer

AGFI (Adjusted Goodness of Fit Index):

GFI testinin yüksek örnek hacmindeki eksikliğini gidermek amacıyla kullanılan bir iyi uyum indekstir. Gözlenen değişken sayısına göre modelin serbestlik derecesi için GFI değerini düzeltmektedir. Örneklem sayısının özellikle büyük olduğu durumlarda AGFI daha temsili bir uyum indeksidir. Değeri 0-1 arasında değişir (Munro 2005; Çokluk, Şekercioğlu ve Büyüköztürk 2010).

0.90<=GFI<1 Normal değer 0.85<=GFI<0.90 Kabul edilebilir değer

RMR (Root Mean Square Residual) SRMR (Standardized Root Mean Square Residual):

SRMR; standartlaştırılmış ortalama hataların kareköküdür. Bu değer sıfıra yaklaştıkça test edilen modelin daha iyi uyum iyiliği gösterdiği anlaşılır. Standardize edilmiş şekline SRMR uyum iyilik indeksi denir (Çokluk, Şekercioğlu ve Büyüköztürk 2010; Wang and Wang 2012).

0<=RMR, SRMR<0.05 0.05<RMR, SRMR<0.10 Normal değer Kabul edilebilir değer

CFI (Comparative Fit Index):

Değişkenler arasında hiçbir ilişkinin olmadığını varsayarak kurulan modelin yokluk modelinden (null) farkını verir. Değişkenler arasında ilişkinin olmadığını öngören modeldir. Mevcut modelin uyumu ile gizil değişkenler arası korelasyonu ve kovaryansı yok sayan sıfır hipotez modelinin uyumunu karşılaştırır. Yani model tarafından tahmin edilen kovaryans matrisi ile sıfır hipotezli modelin kovaryans matrisini karşılaştırır Değeri 0 - 1 arasında değişir (Munro 2005; Çokluk, Şekercioğlu ve Büyüköztürk 2010).

0.97<=CFI<1 Normal değer 0.90<=CFI<0.97 Kabul edilebilir değer

NFI (Normed Fit Index):

NFI; normlaştırılmış uyum indeksi olup, CFI'a alternatif olarak geliştirilmiştir. Örneklem sayısı ile pozitif ilişkilidir. Bu indeks varsayılan modelin temel ya da sıfır hipoteziyle olan uygunluğunu araştırır. 0-1 arasında değişen değerler alır. NFI iç içe model karşılaştırmasına katsı sağlar (Bentler, 1990).

0.95<=NFI<1 0.90<=NFI<0.95 Normal değer Kabul edilebilir değer

NNFI:

NNFI ya da normlaştırılmamış uyum indeksi; örnek sayısının artmasından etkilenmemektedir. Her ne kadar normalite varsayımından hareket ediyor olsa da NNFI genel olarak 0–1 aralığında olmakla birlikte, bazen bu aralığın dışına çıkabilir (Şehribanoğlu, 2005). Uyum indekslerinin 0.90 değerinden büyük ve hata indekslerinin ise, 0.05 değerinden küçük olmasını önermektedir.

0.97<=NNFI<1	Normal değer
0.95<=NFI<0.97	Kabul edilebilir değer

Modifikasyonlar: Model kurulup test edildikten sonra LISREL araştırmacıya bazı düzeltmeler önerebilir (Schreiber, Nora, Stage, Barlow and King 2006). Bu düzeltmeler araştırmacının kurduğu modeli iyileştirme amacıyla yapılır. Düzeltmeler uyum değerlerini yakalamaya yeterli değilse, model teorik yapıya uygun olarak başka bir şekilde yeniden kurulmalıdır (Schreiber, Nora, Stage, Barlow and King 2006).

Modifikasyonlar uygulanacaksa yapılacak değişikliklerin teorik olarak da mantıklı olması gerekmektedir (Diamantopoulos and Siguaw 2000). Örneğin program bir gözlenen değişkenin modelde önerilen örtük değişkenden başka olan bir örtük değişkenin altında olmasını önerirse, bu değişikliği yaptığımızda değişkenin yeni yerinin teorik olarak da mantıklı olması gerekir. Başka bir anlatımla, program bir maddeyi olduğu alt boyuttan başka bir alt boyuta taşımanın faydalı olacağını önerirse, taşınacak bu maddenin yeni alt boyuta uygun olması gerekir.

LISREL ile elde edilen uyum iyiliği indeksleri

Uyum Ölçüsü	İyi Uyum	Kabul Edilebilir Uyum				
χ ² /sd	$0 \le \chi^2/sd \le 2$	$2 \le \chi^2 / sd \le 3$				
RMSEA	$0 \le RMSEA \le 0,05$	0,05 ≤ <i>RMSEA</i> ≤ 0,08				
p değeri (RMSEA<0,05)	$0,10 \le p \le 1,00$	$0,05 \leq p \leq 0,10$				
CFI	$0,97 \leq CFI \leq 1,00$	$0,95 \le CFI \le 0,97$				
GFI	$0,95 \leq GFI \leq 1,00$	$0,90 \leq GFI \leq 0,95$				
AGFI	$0,90 \leq AGFI \leq 1,00$	$0,85 \le AGFI \le 0,90$				
AIC	Karşılaştırılan model için Al	C'ten daha küçük				
CAIC	Karşılaştırılan model için CAIC'ten daha küçük					

Standart Uyum İyiliği Ölçütleri ile Araştırma Sonuçlarının Karşılaştırılması

Uyum Ölçüleri	İyi Uyum	Kabul Edilebilir Uyum
c2	0≤c2≤2df	2df≤c2≤3df
P değeri	0.05≤p≤1	0.01≤p≤0.05
c2/df	0≤c2/df ≤2	2≤c2/df ≤3
RMSEA	0≤RMSEA≤0.05	0.05≤RMSEA≤0.08
RMR		
SRMR	0≤SRMR≤0.05	0.05≤SRMR≤0.10
NFI	0.95≤NFI≤1.00	0.90≤NFI≤0.95
NNFI	0.97≤NNFI≤1.00	0.95≤NNFI≤0.97
CFI	0.97≤CFI≤1.00	0.95≤CFI≤0.97
GFI	0.95≤GFI ≤1.00	0.90≤GFI≤0.95
AGFI	0.90≤AGFI≤1.00	0.85≤AGFI≤0.90
RFI	0.90 <rfi<1.00< td=""><td>0.85< RFI <0.90</td></rfi<1.00<>	0.85< RFI <0.90

Kaynak: Schermelleh-Engel-Moosbrugger (2003)

Lisrel Programında DFA

i) Programın çalıştırılması ve verilerin yüklenmesi:

	LISREL Windows Application
File View Help	
New: Lisrel'de yeni bir dosya oluşturmak.	
Open: Lisrel'de önceden oluşturulmuş bir dosyayı açmak	
Import: Başka programlarda (Excel, SPSS gibi) hazırlanan ve aktarmak.	erileri Lisrel programına

	LISREL	Windows	Appl	lication	- [0	FA.PSF
--	--------	---------	------	----------	------	--------

ቻ File Edit Data Transformation Statistics Graphs Multilevel SurveyGLIM View Window Help

▶☞☞■ ४୭७ ₽♥ ●■ ?

	Y1	Y2	Y3	Y4	Y5	Y6	Y8	Y9	Y10
1	1,000	1,000	2,000	2,000	2,000	1,000	1,000	1,000	2,000
2	1,000	2,000	2,000	2,000	2,000	1,000	1,000	2,000	3,000
3	1,000	2,000	2,000	2,000	1,000	1,000	1,000	3,000	1,000
4	1,000	2,000	1,000	1,000	1,000	3,000	1,000	1,000	3,000
5	1,000	1,000	3,000	2,000	2,000	2,000	1,000	2,000	1,000
6	1,000	2,000	3,000	1,000	2,000	2,000	1,000	1,000	3,000
7	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	3,000
8	1,000	3,000	4,000	5,000	1,000	1,000	1,000	1,000	1,000
9	1,000	2,000	2,000	3,000	1,000	1,000	1,000	1,000	1,000
10	1,000	1,000	1,000	2,000	2,000	1,000	1,000	1,000	1,000
11	1,000	2,000	1,000	2,000	2,000	2,000	1,000	1,000	2,000
12	2,000	2,000	3,000	3,000	3,000	2,000	1,000	1,000	2,000
13	2,000	2,000	2,000	2,000	3,000	3,000	1,000	2,000	2,000
14	2,000	2,000	2,000	1,000	2,000	1,000	0 1,000	3,000	2,000
15	2,000	1,000	3,000	2,000	3,000	2,000	1,000	2,000	2,000
16	2,000	2,000	1,000	2,000	2,000	2,000	1,000	1,000	2,000
17	2,000	1,000	3,000	1,000	2,000	1,000	1,000	3,000	2,000
18	2,000	4,000	3,000	5,000	3,000	2,000	1,000	3,000	2,000
19	2,000	2,000	3,000	2,000	3,000	3,000	1,000	2,000	2,000
20	2,000	2,000	2,000	2,000	2,000	2,000	1,000	1,000	2,000
21	2,000	1,000	1,000	2,000	2,000	1,000	1,000	1,000	1,000
22	2,000	3,000	3,000	2,000	3,000	3,000	1,000	1,000	2,000
23	2,000	2,000	2,000	1,000	2,000	3,000	1,000	2,000	2,000
24	2,000	4,000	3,000	3,000	1,000	2,000	1,000	4,000	4,000
05	0.000	2 000	0.000	0.000	1 000	1 000	1 000	1 000	2.000

<u></u>								Defin	e Variables	-	23	Variable Types	for V1	23
L	2	File	Edit	Data	Transfor	mation	Statistics		e vanabies	-		variable types	0111	
	D	ിഷ	l <u>æ</u> li		Define Var	iables		Y	1	Insert		Ordinal		<u>ОК</u>
					Cala at Vani			- ¥	2 3			Continuous		Cancel
	\mathbb{H}°		$\models \models$		Select Vari	ables/Cas	ses	L X	4	Renam	e	Censored a	bove	
h					Sort Case.			Ý		Variable T	уре	Censored E	elow	
ŀ		-	_					1 ¥	8			Censored a	bove and below	Apply to all
ŀ		<u> </u>	_		Insert Varia	able		Y	10	Category La	abels	2 000	2 000	1 000
-		2	_		Insert Case	25				Missing Va	ilues	3,000	2,000	1,000
-		3	_		Delete Var	iable						2,000	1,000	1,000
-		4	_		D.L.C.							3,000	2,000	1,000
1		5			Delete Cas	e				Cance	1	2,000	2,000	1,000
	J Maria	le Fr	lit Dat	a Tra	neformation	Statistics	Graphs M	То	select more than one	e variable at a		3,000	2,000	1,000
سا سا	1			.a 11a	Instormation	Statistics		tim	e,hold down the CTF the variables to be si	L key while clic! elected	king	3,000	3,000	1,000
	<u> </u>	INE	w				Ctrl+N					2,000	2,000	1,000
	H.	Op	en				Ctrl+O					, 2,000	1,000	1,000
		Im	port Dat	ta in Fre	ee Format						Y	eni		×
		Im	port Ext	ernal D	ata in Other F	ormats								
		Exp	ort LISF	REL Dat	a				Yeni				т	
_	_	Clo	se						DDELICI				_ lamam	1
	-	Sav	/e				Ctrl+S			Jala Project			interl	
_	-	Sav	/e As						LISRELE	miect			iptai	
		Dri	nt				Ctrl+ D		Path Diad	iram				
	_	Dei	at Deau				Cultr		1					
	-	PI	nt Previ	ew										
	-	Pfi	nt Setup)										
		10	FA											
		2 0	:\Users	\Des	ktop\YT\yt									
	_	3 0	:\Users	\Des	ktop\YT\YU									
		40	:\Users	\\Des	ktop\YT\YUS	JF								
		Exi	t											
Stati	stics Graphs Multilevel SurveyGl													
-------	--	--	--	--	--	--	--	--						
	Data Screening													
	Impute Missing Values													
	Multiple Imputation													
	Equal Thresholds													
	Fix Thresholds													
	Homogeneity Test													
	Normal Scores													
	Factor Analysis													
	Factor Analysis Censored Regressions													
	Factor Analysis Censored Regressions Logistic Regressions													
	Factor Analysis Censored Regressions Logistic Regressions Probit Regressions													
	Factor Analysis Censored Regressions Logistic Regressions Probit Regressions Regressions													
	Factor Analysis Censored Regressions Logistic Regressions Probit Regressions Regressions Two-Stage Least-Squares													
	Factor Analysis Censored Regressions Logistic Regressions Probit Regressions Regressions Two-Stage Least-Squares Bootstrapping													

Dutput	<u> </u>	Normal Scores		23
Moment Matrix Covariances	Data Save the transformed data to file:	Variable List:	Cancel	Run
I Save to file: □ LISREL system data DFA.COV Means	Width of fields: 15 Number of decimals: 6	Y1 Y2 Y3 Y4 Y5	Output Options	Syntax
Save to file:	Number of repetitions: 1 Rewind data after each repetition Print bivariate frequency tables	Y6 Y8 Y9 Y10	Add Remove	
Asymptotic Covariance Matrix Save to file: Print in output	 Print tests of underlying bivariate normality Perform tests of multivariate normality Wide print Random seed Set seed to 123456 	Normal Scores for Y1 Normal Scores for Y2 Normal Scores for Y3 Normal Scores for Y4 Normal Scores for Y5 Normal Scores for Y5		× III
Asymptotic Variances Save to file: Print in output	OK Cancel	To select more than o the CTRL key while o selected	one variable at a time licking on the variab	e,hold down lles to be

Gizil değişkenlerin gözlenen değişkenleri Açıklama Oranlarının minidarlık düzeyleri T değerleri t-tablo=1.96 ile karşılaştırılarak, hangi maddenin önemli olup olmadığı test edilir. Tüm maddeler önemli bulunmuştur. T değerleri açısından bir problem yoksa analize devam edilir.

Önemli bulunmayan maddeler kırmızı okla gösterilir ve o maddede bir sorun olduğu düşünülür. Kırmızı çizgili madde varsa ya modifikasyon önerileri doğrultusunda başka bir faktörle ilişkilendirilerek model uyumu test edilmeli ya da modelden çıkarılarak analize devam edilmelidir. Bir maddeyi işlem dışı bırakmak için göstergelerin hata varyanslarının da kontrol edilmesi gerekir. Her bir maddenin faktör yük değerleri en az 0.30 ve üzeri olmalıdır. Bunun için Standardized Solution (standartlaştırılmış çözüm) yapılır.

	ISREL Windows Application -
💭 File Edit Setup Draw View Image Output Window Help	
Groups: Memnuniyet Olcegi DFA 🚽 Models: X-Model 🖵 Estimates	T-values 💌
Observed Y	Estimates Standardized Solution
Y1	Conceptual Diagram
Y2 🗌	T-values Medification Indicas
	Expected Changes

Models: X-Model

Ŧ

Hata

•

 $\overline{\mathbf{v}}$

En yüksek hata varyansı Y10=0.73 Ancak Y10 önemli bulunduğundan işlemden çıkarılmaz

Chi-Square=81.06, df=26, P-value=0.00000, RMSEA=0.078

Wind	dow Help	
	Cascade	LISREL 8.71
	Tile	BY
	Arrange Icons	
	-	Karl G. Jöreskog & Dag Sörbom
	Close All	
	1 DFA.psf	
	2 DFA.OUT	This program is published exclusively by
	3 DEA0	Scientific Software International, Inc.
_	5 DTA0	7383 N. Lincoln Avenue, Suite 100
✓	4 DFA0.OUT	Lincolnwood, IL 60712, U.S.A.
	5 DFA0.PTH	Phone: (800)247-6113, (847)675-0720, Pax: (847)675-2140
		Use of this program is subject to the terms specified in the
		Universal Convright Convention
		Website: www.ssicentral.com
		Webbite: www.bbitentiti.com
		The following lines were read from file C:\Users\terzi\Desktop\¦ST NOT\GA\DFA0.spl:
		Memnuniyet Olcegi
		Observed Variable
		Y1 Y2 Y3 Y4 Y5 Y6 Y8 Y9 Y10
		Covariance Matrix from File dfa.COV
		Sample Size = 348
		Latent Variables: Personel Temizlik
		Relationships:
		Y1 Y2 Y3 Y4 Y5 Y6 = Personel
		Y8 Y9 Y10 = Temizlik
		Fach Diagram End of Broblem
		End of Flobien
		Sample Size = 348

Memnuniyet Olcegi

Covariance Matrix

	Y1	¥2	¥3	¥4	Y 5	¥6
ΥL	0.95					
Y2	0.52	0.96				
Y3	0.47	0.51	0.89			
Y4	0.48	0.60	0.59	1.27		
¥5	0.43	0.41	0.50	0.60	1.08	
Y6	0.45	0.46	0.44	0.65	0.60	1.08
Y8	0.47	0.54	0.52	0.61	0.58	0.68
Y9	0.36	0.42	0.43	0.47	0.41	0.43
Y10	0.27	0.32	0.41	0.43	0.55	0.48

Covariance Matrix

	¥8	¥9	Y10
¥8	1.18		
<u>Y9</u>	0.66	1.18	
Y10	0.64	0.50	1.73

Y1 = 0.63*Personel, Errorvar.= 0.55 , R^s = 0.42 (0.049)(0.046)12.86 11.86 Y2 = 0.69*Personel, Errorvar.= 0.48 , R^s = 0.49 (0.048)(0.042)14.30 11.39 Y3 = 0.69*Personel, Errorvar.= 0.42 , R^s = 0.53 (0.046)(0.038)15.03 11.10 Y4 = 0.83*Personel, Errorvar.= 0.58 , R^s = 0.54 (0.055)(0.053)15.19 11.03 Y5 = 0.72*Personel, Errorvar.= 0.56 , R^s = 0.48 (0.051)(0.049)13.98 11.51 Y6 = 0.75*Personel, Errorvar.= 0.51 , R^s = 0.52 (0.051)(0.046)14.87 11.17 Y8 = 0.94*Temizlik, Errorvar.= 0.30 , R^s = 0.75 (0.053)(0.054)17.75 5.47 Y9 = 0.70*Temizlik, Errorvar.= 0.68 , R^s = 0.42 (0.056)(0.060)12.51 11.30 Y10 = 0.68*Temizlik, Errorvar.= 1.27 , R^s = 0.27 (0.071)(0.10)9.56 12.27

Correlation Matrix of Independent Variables

	Personel	Temizlik
Personel	1.00	
Temizlik	0.84	1.00
	(0.03)	
	26.64	

Goodness of Fit Statistics

Degrees of Freedom = 26 Minimum Fit Function Chi-Square = 76.17 (P = 0.00) Normal Theory Weighted Least Squares Chi-Square = 81.06 (P = 0.00) Estimated Non-centrality Parameter (NCP) = 55.06 90 Percent Confidence Interval for NCP = (31.64 ; 86.10)

Minimum Fit Function Value = 0.22 Population Discrepancy Function Value (F0) = 0.16 90 Percent Confidence Interval for F0 = (0.091 ; 0.25) Root Mean Square Error of Approximation (RMSEA) = 0.078 90 Percent Confidence Interval for RMSEA = (0.059 ; 0.098) P-Value for Test of Close Fit (RMSEA < 0.05) = 0.0085

```
Expected Cross-Validation Index (ECVI) = 0.34
90 Percent Confidence Interval for ECVI = (0.28 ; 0.43)
ECVI for Saturated Model = 0.26
ECVI for Independence Model = 7.50
```

RMSEA değeri %90 güven aralığıyla birlikte rapor edilmelidir. Üst sınırının 0,10'un altında kalması beklenir. Güven aralığının geniş olması ise daha geniş bir örnekleme ihtiyaç duyulduğuna işaret eder.

```
Chi-Square for Independence Model with 36 Degrees of Freedom = 2582.91
                      Independence AIC = 2600.91
                          Model AIC = 119.06
                        Saturated AIC = 90.00
                     Independence CAIC = 2644.58
                         Model CAIC = 211.25
                       Saturated CAIC = 308.35
                    Normed Fit Index (NFI) = 0.97
                  Non-Normed Fit Index (NNFI) = 0.97
               Parsimony Normed Fit Index (PNFI) = 0.70
                  Comparative Fit Index (CFI) = 0.98
                  Incremental Fit Index (IFI) = 0.98
                   Relative Fit Index (RFI) = 0.96
                       Critical N (CN) = 208.93
               Root Mean Square Residual (RMR) = 0.044
                       Standardized RMR = 0.039
                  Goodness of Fit Index (GFI) = 0.95
             Adjusted Goodness of Fit Index (AGFI) = 0.91
            Parsimony Goodness of Fit Index (PGFI) = 0.55
```

AIC: Hiyerarşik olmayan modeller kıyaslanırken kullanılır. Daha düşük değere sahip model tercih edilmelidir (Kline, 2005).

CFI: Tüm kovaryansların 0 kabul edildiği bir taban model ile kıyaslama yapar. 0,90 ve üzerinde olması önerilir (Hu & Bentler, 1999).

Stan. SRMR: 0,10'un altında olması önerilir (Klein, 2005).

UYGULAMA SONUÇLARI

H0: Gözlenen ve beklenen varyans-kovaryans matrisleri arasında fark yoktur. H1: Gözlenen ve beklenen varyans-kovaryans matrisleri arasında fark vardır.

Ki-kare istatistiği: p=0.000<0.05

Doğrulayıcı faktör analizi sonuçlarına göre öncelikle p değerinin incelenmesi gerekmektedir. Bu değer, beklenen kovaryans matrisi ile gözlenen kovaryans matrisi arasındaki farkın manidarlığı hakkında bilgi vermektedir.

 $\chi^2/sd \ll 2$ mükemmel uyum vardır. 2< $\chi^2/sd \ll 5$ kabul edilebilir düzeyde bir uyum vardır (Kline, 2005).

Ki-kare/sd=81,06/26=3,12

RMSEA=0.078 < 0.08 iyi bir uyum indeksi görülmektedir.

0<RMSEA<=0.05 mükemmel uyum 0.05<**RMSEA<=0.08 iyi uyum (Jöroskog ve Sörbom, 1993)** 0.08<RMSEA<0.10 zayıf uyum vardır (Tabachnick ve Fidel, 2001).

Uyum İndekslerinin Yorumu

GFI=0,95 AGFI=0,91
 GFI ve AGFI>0.95 Mükemmel uyum
 GFI ve AGFI>0.90 İyi uyum (Hooper, Caughlan ve Mullen, 2008)
 GFI mükemmel bir uyuma sahipken, AGFI iyi bir uyuma sahiptir.

RMR=0.044 Stan.RMR=0.039
 RMR-Sta.RMR<0.05 Mükemmel uyum
 RMR-Sta.RMR<0.08 İyi uyum
 RMR-Sta.RMR<0.10 zayıf uyum (Brown, 2006).

RMR ve Standardize RMR mükemmel bir uyuma sahiptir.

NNFI=0.97 CFI=0.98
 NNFI, CFI>0.95 Mükemmel uyum
 NNFI, CFI>0.90 İyi uyum (Sümer, 2000)

NNFI ve CFI indeksleri mükemmel uyuma sahiptir.

Bir modelin kabul edilebilir sayılması için RMSEA değerinin 0.08'in altında, CFI değerinin 0.95'in üzerinde olması koşuluna bakılır.

	The	Modificat	ion India	es Sugges	t to Add	d the	2
Path	to :	Erom	Decrease	in Chi-Sq	uare	New	Estimate
¥6		「emizlik		11.6			0.42
The M	odifi	cation Ind	dices Sugg	gest to Ad	d an Er:	ror (Covariance
Betw	een	and	Decrease	in Chi-Sq	uare	New	Estimate
Y2	3	71		13.8			0.12
Y5	3	<u>7</u> 2		12.0		-	-0.12
Y6	3	73		14.4		-	-0.12
Y8	3	<u>76</u>		14.2			0.12
Y10	3	<u>75</u>		9.1			0.15
Ħ			Tin	ne used:	0.031	Seco	onds

Eğer model uyum indekslerinden bir veya bir kaçı belirtilen kriterler düzeyinde değilse modifikasyon işlemi yapılmalıdır. Modifikasyon önerileri (The modification indeces suggest to add an error covariance) incelendiğinde 5 modifikasyon önerisi ortaya çıkmıştır. DFA da sadece aynı faktör içerisinde yer alan maddelerle modifikasyon yapılabilir. Yani farklı iki faktörde yer alan maddeler arasında modifikasyon yapılmaz.

Y5-Y10 VE Y8-Y6 farklı faktörlerde yer aldığından modifikasyon yapılmaz. Y1-Y2, Y5-Y2, Y6-Y3 maddelerine modifikasyon yapılır.

Modifikasyon yapımı:

Yukarıdaki simge seçilir. Hata varyanslarının yanında yer alan çubuğa tıklanır. Farenin sol tuşuna basılı tutulur ve el çekilmeden diğer modifikasyon yapılacak olan göstergenin hata varyansının yanında yer alan modifikasyon yapılacak olan göstergenin hata varyansının yanında yer alan çubuğa yuvarlak işareti çıkıncaya kadar ok çekilir. Modifikasyonlar tamamnınca Run Lisrel komutu çalıştırılır.

Tüm modifikasyonlar yapıldıktan sonra F8 ve F5 tuşlarına sırayla basılır.

Ki-kare/sd=37.94/23=1.65<2 Mükemmel bir uyum vardır.

RMSEA=0.043<0,05 mükemmel bir uyum indeksi görülmektedir.

Goodness of Fit Statistics

Degrees of Freedom = 23 Minimum Fit Function Chi-Square = 38.62 (P = 0.022) Normal Theory Weighted Least Squares Chi-Square = 37.94 (P = 0.026) Chi-Square Difference with 3 Degrees of Freedom = 43.12 (P = 0.00) Estimated Non-centrality Parameter (NCP) = 14.94 90 Percent Confidence Interval for NCP = (1.84 ; 35.92)

Minimum Fit Function Value = 0.11 Population Discrepancy Function Value (F0) = 0.043 90 Percent Confidence Interval for F0 = (0.0053 ; 0.10) Root Mean Square Error of Approximation (RMSEA) = 0.043 90 Percent Confidence Interval for RMSEA = (0.015 ; 0.067) P-Value for Test of Close Fit (RMSEA < 0.05) = 0.65

```
Expected Cross-Validation Index (ECVI) = 0.24
90 Percent Confidence Interval for ECVI = (0.20 ; 0.30)
ECVI for Saturated Model = 0.26
ECVI for Independence Model = 7.50
```

```
Chi-Square for Independence Model with 36 Degrees of Freedom = 2582.91

Independence AIC = 2600.91

Model AIC = 81.94

Saturated AIC = 90.00

Independence CAIC = 2644.58

Model CAIC = 188.69

Saturated CAIC = 308.35
```

Normed Fit Index (NFI) = 0.99 Non-Normed Fit Index (NNFI) = 0.99 Parsimony Normed Fit Index (PNFI) = 0.63 Comparative Fit Index (CFI) = 0.99 Incremental Fit Index (IFI) = 0.99 Relative Fit Index (RFI) = 0.98 Critical N (CN) = 375.11	CFI=0.99>0,95 Çok iyi uyum var.
Root Mean Square Residual (RMR) = 0.034 Standardized RMR = 0.028 Goodness of Fit Index (GFI) = 0.98 Adjusted Goodness of Fit Index (AGFI) = 0.95 Parsimony Goodness of Fit Index (PGFI) = 0.50 The Modification Indices Suggest to Add an Error Covariance Between and Decrease in Chi-Square New Estimate	
Y6 Y2 10.3 -0.11	
Y8 Y6 8.1 0.09	
Time used: 0.016 Seconds	

Y2-Y6 modifikasyonu yapılabilir. Y8-y6 farklı faktörlerde olduğu için modifikasyon yapılamaz.

Y2-Y6 modifikasyonu ki-kareye önemli bir katkı sağlamadığından (ki-kare=151.23 çok yükselmiştir) dolayı (RMSEA=0,13>0,08 değeri yükseldiğinden) modifikasyon yapılmaz. Ve işlem bitirilir.

Lisrel'de DFA Çözümü-II.Yöntem (Path Diagram)

LISREL Win	dows Application ·	[DFA2.psf]		-					
💭 File Edit	Data Transfor	mation Statistics	Graphs Multile	vel SurveyGLIM	View Window	Help			
<u> </u>		<u>x x </u>	l ?						
	⊨ [ff 🖅 🗶	🗶 🔝 🔛							
	Y1	Y2	Y3	Y4	Y5	Y6	Y8	Y9	Y10
1	1,000	1,000	2,000	2,000	2,000	1,000	1,000	1,000	2,000
2	1,000	2,000	2,000	2,000	2,000	1,000	1,000	2,000	3,000
3	1,000	2,000	2,000	2,000	1,000	1,000	1,000	3,000	1,000
4	1,000	2,000	1,000	1,000	1,000	3,000	1,000	1,000	3,000
5	1,000	1,000	3,000	2,000	2,000	2,000	1,000	2,000	1,000
6	1,000	2,000	3,000	1,000	2,000	2,000	1,000	1,000	3,000
7	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	3,000
8	1,000	3,000	4,000	5,000	1,000	1,000	1,000	1,000	1,000
9	1,000	2,000	2,000	3,000	1,000	1,000	1,000	1,000	1,000
10	1,000	1,000	1,000	2,000	2,000	1,000	1,000	1,000	1,000
11	1,000	2,000	1,000	2,000	2,000	2,000	1,000	1,000	2,000
12	2,000	2,000	3,000	3,000	3,000	2,000	1,000	1,000	2,000
13	2,000	2,000	2,000	2,000	3,000	3,000	1,000	2,000	2,000
	0.000	0.000	0.000	4 000	0.000	4 000	4,000	0.000	0.000

Define Variables		Variable Types for Y	1	×		
Y1 Y2 Y3 Y4 Y5 Y6 Y8 Y9 Y10	Insert Rename Variable Type Category Labels Missing Values	 Ordinal Continuous Censored above Censored below Censored above 3,000 2,000 	and below 2,000 2.000	OK Cancel ✓ Apply to all 1,000 1,000	Yeni Yeni PRELIS Data SIMPLIS Project LISREL Project Path Diagram	Tamam iptal
	ОК	2,000	1,000	1,000		
To select more than one vari	Cancel	3,000 3,000 2,000 2,000	2,000 3,000 2,000 1,000	1,000 1,000 1,000 1,000		
on the variables to be selected	ed	3,000	3,000 3,000	1,000 1,000		
		File Edit Setup Di Groups: Observed Y VAR 1 VAR 2	raw View Imag	e Output Window H	telp Estimates: Estimates	

Move Up

Move Down

Press the Down Arrow to insert one row at a time once a label has been typed in the

Press the Insert key to insert empty rows or the Delete key to delete selected rows

Move Up

Move Down

previous row

abels	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Labels		
Observed Variables Name A 1 VAR 1 • 2 VAR 2 • 3 Y1 • 4 Y2 • 5 Y3 • 6 Y4 · 7 Y5 • 8 Y6 • 9 Y8 • 10 Y9 • Add/Read Variables • Move Down Move Up	Add/Read Variables ● Read from file: LISREL System File ● Add list of variables (e.g., var1-var5): File Name Y1-Y6 Browse Info Select one of the two system files. The LISREL data system file has a DSF extension and the PRELIS spreadsheet a PSF extension.	Observed Variables Name 1 VAR 1 2 VAR 2 3 Y1 4 Y2 5 Y3 6 Y4 7 Y5 8 Y6 9 Y8 10 Y9 Add/Read Variables	Name 1 Personel 2 Temizlik 3 Add Latent Variables Move Down Move Up	< Previous Next > OK Cancel
Press the Down Arrow to insert previous row Press the Insert key to insert err	pty rows or the Delete key to delete selected rows	Press the Down Arrow to insert one ro previous row Press the Insert key to insert empty row	Add Variables Add one or list of variables here (e.g., var1 - var5):	ОК
			Persone	Cancel

USREL Windows Application - [DFA2.pth]									
💭 File 🛛 E	dit Setup	Draw	View	Image	Output	Window	Help		
			<u>R</u> 2	k 9	1				
Groups:			-	- Mo	odels:			_	Estimates: Estimates
Observed VAR 1 VAR 2 Y1 Y2 Y3 Y4 Y5 Y6 Y8 Y9 Y10									
Latent Personel Temizlik	Eta								

Maddeler seçilip, sağ taraf taşınır . Ve o maddelere faktör atanır.

Her bir maddenin önceden belirtilmiş faktörlerle ilişkilendirilir. Bunun için araç kutusundan Yararlanılır.

Araç kutusundaki ok işareti tıklanarak, ilgili maddeler ile ilgili faktörler birbirine bağlanır.

•

Bağlama işlemi bitince F8 ve F5 tuşlarına basılır.

SYSTEM FILE from file 'C:\Users\terzi\Desktop\İST NOT\GA\UYGULAMA\Lisrel\DFA2.DSF'
Latent Variables Personel Temizlik
Relationships
Y1 = Personel
Y2 = Personel
Y3 = Personel
Y4 = Personel
Y5 = Personel
Y6 = Personel
Y8 = Temizlik
Y9 = Temizlik
Y10 = Temizlik
Path Diagram
End of Problem
×

Observed	Latent	Giro	.pc					-
VAR 1 VAR 2 V1	Personel Temizlik	From	Set Path	7	×	•		
Y2 Y3		To	Set Variance	7	8	9		<==
Y4 Y5		Free	Set Covariance	4	5	6	=	H
Y6 Y8		Fix	Set Error Variance	1	2	3	(<
Y9 Y10		Equal	Set Error Covariance	0)	

STATA İLE DFA

SPSS'de dosya stata dosyası olarak kayıt edilir.

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze				
Ne	ew					Þ			
<u>o</u> r	<u>O</u> pen								
Op	oen Da	ta <u>b</u> ase				۶			
🗊 Re	🗊 Rea <u>d</u> Text Data								
Re	Read Cognos Data								
	Close Ctrl+F4								
🗟 🔚	🖶 Save Ctrl+S								
Sa	S <u>a</u> ve As								
🔚 Save All Data									

ta 👘	Save Data As		×					
Look in: 🕕 UYGULAMA 🔹 🔯 🔯 🔛								
DFA.sav								
	Keeping 9 of 9 variables.							
File name:	File name: DFA.sav Save							
Save as type: SPSS Statistics (*.sav)								
Encoding: SAS v9+ for UNIX (*.sas7bdat) SAS Transport (*.xpt) Stata Versions 4-5 (*.dta) Stata Version 6 (*.dta) Stata Version 7 Intercooled (*.dta) Stata Version 7 SE (*.dta) Stata Version 8 Intercooled (*.dta)								
Stata Version 8 SE (*.dta)								

	Stata/SE 12.0 - [Results]		- 🗇 🗙
File Edit Data Graphics Statistics	User Window Help		Ð
🖆 🛛 🔿 🗐 🖸 • 🔝 • 📝 • 📝			
Review T + ×	A	Variables	т₽×
# Command _rc	$ \frac{1}{1 - 1} 1$	Variable I	abel
There are no items to show.	<pre>/ / // / // 12.0 Copyright 1985-2011 StataCorp LP Statistics/Data Analysis StataCorp</pre>	There are no	items to show.
		Descention	
		Properties	+ ×
		□ Variables	^
		Name	
		Label	
		Туре	
		Format	
		Value Label	
		Notes	
		E Data	
	✓	Label	
		Notes	
	Command P	Variables	0
		Observations	0
		Size	0 🗸
C:\Users\Toshiba_\Desktop\YT\Stata 12			CAP NUM OVR
🗧 🙋 🚞 🦻		▲ IP 10 -	nl ∲) 19:56 1.3.2016

ati	stics User Window Help		_						
Summaries, tables, and tests									
	Linear models and related	•							
	Binary outcomes	•	(R)						
	Ordinal outcomes	►	/ 12.0 Copyright 1985-2011						
	Categorical outcomes	►	s StataCorp						
	Count outcomes	►	4905 Lakeway Drive						
	Exact statistics	►	College Station, Te						
	Endogenous covariates	►	800-STATA-PC						
	Sample-selection models	•	979-696-4600 (fax)						
	Multilevel mixed-effects models	►							
	Generalized linear models	•	<pre>, : perpetual license:</pre>						
	Nonparametric analysis	►	611859953						
	Time series	· ATA							
	Multivariate time series	•							
	State-space models Longitudinal/panel data								
			-set maxvar-) 5000 maximum varia						
	Survival analysis	►	.ta\DFA.dta", clear						
	Epidemiology and related	•							
	SEM (structural equation modeling)	►	Model building and estimation						
	Survey data analysis	•	Testing and Cls						
	Multiple imputation		Goodness of fit						
	Multivariate analysis	►	Group statistics						
	Power and sample size	•	Predictions						
	Recampling		Other						

St

-8		Measure	ment cor	nponent	-		×
Main	Distances	Connections					
Latent	variable narr	ie:					
PERS	ONEL						- 1
Mea	surement var	iables					- 1
05	elect variabl	es					
05	pecify numb	er of variables					
Mea	surement va	riables:					
Y1	Y2 Y3 Y4 Y5	5 Y6				~	
)o not estima	te constants					
Mea	surement dire	ection:					
Dov	vn	~					
							-
				ОК		Cance	al

-8				9	SEM estim	ation opt	ions		-		
Gro	up	Model	if/in	Weights	SE/Robust	Reporting	Maximiza	ation			_
) Sta	ndard ar	nalysis (n	o groups)							
C) Gro	up analy	/sis								
Gr	oup	variable	:	Par	ameters that a	are equal aci	oss group	18:		ы	
1-										Ý	
	Sumi	mary sta	tistic dat	a options—							
	Sele	et summ	ary grou	ps:							
	A	llow gro	ups and	pooling of S	SD correlation	IS					
0	0					OK		Cancel		Submit	

Estir	mation	Settings	View	w Help
₽,	Estima	ite		🔁 🛟 🖺 Group: 🕞
	Clear B	Estimates		
	Testin	g and Cls	•	
	Goodr	ness of fit		Overall goodness of fit
	Group	statistics	+	Equation-level goodness of fit
	Predic	tions	•	Matrices of residuals
	Other		•	Information criterion

B	estat - Postestima	ation tools for	sem	<mark>></mark>	<
Reports and statistics: (su Equation-level tests that Display estimation results Group-level goodness-of Tests for invariance of p Goodness-of-fit statistics Statistics to be displayed: all Suppress descriptions	bcommand) all coefficients are zero (in modeling framework (fit statistics (ggof) arameters across groups (gof) of statistics	eqtest) ramework) (ginvariant)		~]
00 🗈		ОК	Cancel	Submit	

```
. estat gof, stats(all)
```

Fit statistic	Value	Description	
Likelihood ratio			
chi2_ms(26)	95.147	model vs. saturated	
p > chi2	0.000	ľ	
chi2_bs(36)	1219.754	baseline vs. saturated	
p > chi2	0.000		
Population error			
RMSEA	0.087	Root mean squared error of approximation	
90% CI, lower bound	0.069		•
upper bound	0.107		
pclose	0.001	Probability RMSEA <= 0.05	
Information criteria			
AIC	8282.236	Akaike's information criterion	
BIC	8390.097	Bayesian information criterion	
Baseline comparison			
CFI	0.942	Comparative fit index	
TLI	0.919	Tucker-Lewis index	
Size of residuals			
SRMR	0.041	Standardized root mean squared residual	
CD	0.943	Coefficient of determination	