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Calculating the values of functions y1, ¥ and their derivatives from the asymptotic
formulas (296) and substituting the resulting values in Eqgs. (j'), we obtain

ya? 1
Cy = —269 —— =N
! Ea \/d + x0
ya? 1
Cy = —299 ~— N
i Ba \/d + 1z,
where N = (6—5/\/§ \/2795-21.45

Substituting these values of the constants in expression (g’) we find for the bending
moment at the bottom
M, = 13,900 lb-in. per in.

In the same manner, by using expression (h'), we find the magnitude of the shearing
force at the bottom of the tank as

Qo = 527 1b per in.

These results do not differ much from the values obtained earlier for a tank with
uniform wall thickness (page 487).

119. Thermal Stresses in Cylindrical Shells. Uniform Temperature
Distribution. If a cylindrical shell with free edges undergoes a uniform
temperature change, no thermal stresses will be produced. But if the
edges are supported or clamped, free expansion of the shell is prevented,
and local bending stresses are set up at the edges. Knowing the thermal
expansion of a shell when the edges are free, the values of the reactive
moments and forces at the edges for any kind of symmetrical support
can be readily obtained by using Egs. (279) and (280), as was done in
the cases shown in Fig. 241.

Temperature Gradient in the Radial Direction. Assume that ¢; and ¢,
are the uniform temperatures of the cylindrical wall at the inside and the
outside surfaces, respectively, and that the variation of the temperature
through the thickness is linear. In such a case, at points at a large dis-
tance from the ends of the shell, there will be no bending, and the stresses
can be calculated by using Eq. (51), which was derived for clamped plates
(see page 50). Thus the stresses at the outer and the inner surfaces are

— _ Ea(t1 b t2)
g = Op = + 7(—1—-:7)—‘ (a)

where the upper sign refers to the outer surface, indicating that a tensile
stress will act on this surface if £; > ..

Near the ends there will usually be some bending of the shell, and the
total thermal stresses will be obtained by superposing upon (a) such
stresses as are necessary to satisfy the boundary conditions. Let us con-
sider, as an example, the condition of free edges, in which case the stresses
o, must vanish at the ends. In calculating the stresses and deformations
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in this case we observe that at the edge the stresses (a) result in uni-
formly distributed moments M, (Fig. 250a) of the amount

Eo(t, — t2)h®

Mo = - 12(1 — ) ®

To obtain a free edge, moments of the same magnitude but opposite in
direction must be superposed (Fig. 250b). Hence the stresses at a free
edge are obtained by superposing upon the stresses (a) the stresses pro-
duced by the moments — M, (Fig. 250b). These latter stresses can be
readiiy calculated by using solution (278). From this solution it follows
that

Bty — t)h?
Lemo = 57—

(N«p)z=0 = - %L' (w)z=0 =

vEa(ty — ta)h?
20 =) (c)
@ M, _ Eha(ty — t2) f—
@ 28D " 2 /3(1 — ») & @

It is seen that at the free edge the maximum thermal stress acts in the
circumferential direction and is obtained by adding to the stress (a) the
stresses produced by the moment M, and the force N,. Assuming that
{1 > t3, we thus obtain

_ Ea(ty — t) _ V1=
(Uv)max = 2(1 — V) (1 v + \/§ ) (8)

For » = 0.3 this stress is about 25 per cent greater than the stress (a)
calculated at points at a large distance from the ends. We can therefore
conclude that if a crack will occur in a brittle

(M¢)2=0 = V(Mz)z=0 =

C@—x material such as glass due to a temperature
Mo ™ difference f; — t», it will start at the edge and
Z A{a) will proceed in the axial direction. In a similar
" q ——x manner the stresses can also be calculated
0 I in cases in which the edges are clamped or

z b supported.}
Fra. 950 Temperature Gradient in the Axial Direction.

If the temperature is constant through the
thickness of the wall but varies along the length of the cylinder, the pro-
blem can be easily reduced to the solution of Eq. (274).2 Lett = F(x) be
the increase of the temperature of the shell from a certain uniform initial
temperature. Assuming that the shell is divided into infinitely thin rings
by planes perpendicular to the x axis and denoting the radius of the shell by
a, the radial expansion of the rings due to the temperature changeis aaF ().

! Several examples of this kind are discussed in the paper by C. H. Kent, Trans.
ASME, vol. 53, p. 167, 1931.
2 See Timoshenko and Lessells, ‘“ Applied Elasticity,”’ p. 146, 1925.
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This expansion can be eliminated and the shell can be brought to its initial
diameter by applying an external pressure of an intensity Z such that

% = aaF(z)
which gives
Eh

A load of this intensity entirely arrests the thermal expansion of the shell
and produces in it only circumferential stresses having a magnitude

0y = — — = —EaF(z) 0)

To obtain the total thermal stresses, we must superpose on the stresses (g)
the stresses that will be produced in the shell
by a load of the intensity —Z. This latter
load must be applied in order to make the
lateral surface of the shell free from the ex-
ternal load given by Eq. (f). The stresses
produced in the shell by the load —Z are ob-
tained by the integration of the differential
equation (276), which in this case becomes

Y > 2IIEIIIII
4 , R ]
37? + ise Ehe W LA [ Mo] [Mo_|

= - 22 p@)
Da 2 (t-t)  (b)

As an example of the application of this
equation let us consider a long cylinder, as Q@
shown in Fig. 251, and assume that the part x
of the cylinder to the right of the cross section 2
mn has a constant temperature ¢y, whereas that Fie. 251
to the left side has a temperature that decreases linearly to a temperature

{, at the end z = b according to the relation

ERCEAY:

t =t b

The temperature change at a point in this portion is thus
F($)=t'-to=—(t—°-_l;—h—)§ @)

Substituting this expression for the temperature change in Eq. (h), we
find that the particular solution of that equation is

m=%m—Mw 0)
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The displacement corresponding to this particular solution is shown in
Fig. 251b, which indicates that there is at the section mn an angle of dis-
continuity of the magnitude

SE

= %‘1 (o — 1) k)

To remove this discontinuity the moments M, must be applied. Since
the stress o, corresponding to the particular solution (j) cancels the
stresses (g), we conclude that the stresses produced by the moments M,
are the total thermal stresses resulting from the above-described decrease
in temperature. If the distances of the cross section mn from the ends
of the eylinder are large, the magnitude of the moment M, can be obtained
at once from Eq. (280) by substituting

dw 1

Mo = —8D ;—‘; (to — t1) 0]

to obtain?

Substituting for 8 its value from expression (275) and taking » = 0.3,
we find that the maximum thermal stress is

(0)mae = 6h—ﬂf° = 0.353 E—b"‘ Vah(ty — ty) (m)

It was assumed in this calculation that the length b to the end of the
cylinder is large. If this is not the case, a correction to the moment (1)
must be calculated as follows. In an infinitely long shell the moment M,
produces at the distance £ = b a moment and a shearing force (Fig. 251¢)?
that are given by the general solution (282) as

2
M. = —D %Y = Mup(sb)
d*w ()
Q. = —D(Eg = —28M 5 (8b)

Since at the distance x = b we have a free edge, it is necessary to apply
there a moment and a force of the magnitude

—M, = M)  —Q. = 28M(6b) ©
in order to eliminate the forces (n) (Fig. 251¢).

VIf t, — ¢, is positive, as was assumed in the derivation, M, is negative and thus
has the direction shown in Fig. 251b.

2 The directions M, and Q. shown in Fig. 251c are the positive directions if the
z axis has the direction shown in Fig. 251a.



GENERAL THEORY OF CYLINDRICAL SHELLS 501

The moment produced by the forces (0) at the cross section mn gives
the desired correction AM, which is to be applied to the moment (I). Its
value can be obtained from the third of the equations (282) if we substi-
tute in it — M p(8b) for Moand —28M ¢ (8b)* for @o. These substitutions
give

M = ~DEY o Mgt — 2Mfr (D) ®

As a numerical example, consider a cast-iron cylinder having the following dimen-
sions: @ = 9{}in, k = 1}in, b =4} in.; a0 = 101 - 1077, B = 14 - 108 psi,

ty — t; = 180°C
The formula (m) then gives

omax = 7,720 psi (9)
In calculating the correction (p), we have

_ pa=m_ 1
g = \/ YR XY (in.) 8b 1.50
and, from Table 84,

e(Bb) = 0.238  {(8b) = 0.223
Hence, from Eq. (p),

AM = —M(0.2382 + 2 .0.2232) = —0.156]M),

This indicates that the above-calculated maximum stress (¢) must be diminished by
15.6 per cent to obtain the correct maximum value of the thermal stress.

The method shown here for the calculation of thermal stresses in the case of a linear
temperature gradient (2) can also be easily applied in cases in which F(z) has other
than a linear form.

120. Inextensional Deformation of a Circular Cylindrical Shell.! If
the ends of a thin circular cylindrical shell are free and the loading is not
symmetrical with respect to the axis of the cylinder, the deformation con-
sists principally in bending. In such cases the magnitude of deflection
can be obtained with sufficient accuracy by neglecting entirely the strain
in the middle surface of the shell. An example of such a loading con-
dition is shown in Fig. 252. The shortening of the vertical diameter
along which the forces P act can be found with good aceuracy by con-
sidering only the bending of the shell and assuming that the middle sur-
face is inextensible.

Let us first consider the limitations to which the components of dis-
placement are subject if the deformation of a cylindrical shell is to be
inextensional. Taking an element in the middle surface of the shell at
a point O and directing the coordinate axes as shown in Fig. 253, we shall

* The opposite sign to that in expression (o) is used here, since Egs. 282 are derived
for the direction of the z axis opposite to that shown in Fig. 251a.

! The theory of inextensional deformations of shells is due to Lord Rayleigh, Proc.
London Math. Soc., vol. 13, 1881, and Proc. Roy. Soc. (London), vol. 45, 1889.
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denote by u, v, and w the components in the z, ¥, and 2z directions of the
displacement of the point O. The strain in the z direction is then

€@ = — (a)

In calculating the strain in the circumferential direction we use Eq. (a)
(Art. 108, page 446). Thus,

=== ®)

The shearing strain in the middle surface can be expressed by

ou v
Yz = a 6"‘; + 55 (C)
which is the same as in the case of small deflections of plates except that
a do takes the place of dy. The condition that the deformation is inexten-

= L ooaee- - 1 ;
x_rpt 0 j P { s
o /"1 \\
l {9 2t
. - o }.2a . -—4‘ _/L RSP W
i t‘“O i //I
X /
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sional then requires that the three strain components in the middle surface
must vanish; z.e.,
du

1 v
-0 i

= =0 +Z2 =0 @)

w ou i
a ade Oz

These requirements are satisfied if we take the displacements in the
following form:

U1=0

L)
" =a 2 (an cos ne — a, sin ne)
1

. (o)

w = —a Z n(a. sin ne + a, cos ne)

n=1

where a is the radius of the middle surface of the shell, ¢ the central
angle, and a, and a, constants that must be calculated for each particular
case of loading. The displacements (¢) represent the case in which all
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cross sections of the shell deform identically. On these displacements
we can superpose displacements two of which vary along the length of
the cylinder and which are given by the following series:

©

—a z % (b, sin ng + b., cos ne)

=1

3
o~
Il

vy = & z (b, cos ne — bl sin ne) o
n=1

Wy = —& 2 n(b, sin ne + b}, cos ne)

ne=l

It can be readily proved by substitution in Eqs. (d) that these expressions
also satisfy the conditions of inextensibility. Thus the general expres-
sions for displacements in inextensional deformation of a cylindrical shell
are

U = U+ U2 v =1 + vy w = w; + We (g)

In calculating the inextensional deformations of a eylindrical shell
under the action of a given system of forces, it is advantageous to use
the energy method. To establish the required expression for the strain
energy of bending of the shell, we begin with
the calculation of the changes of curvature of as
the middle surface of the shell. The change "W
of curvature in the direction of the generatrix d
is equal to zero, since, as can be seen from
expressions (e) and (f), the generatrices re- ds /\\ n dw, d?w
main straight. The change of curvature of n X!/
the circumference is obtained by comparing Fic. 254
the curvature of an element mn of the circum-
ference (Fig. 254) before deformation with that of the corresponding ele-
ment mn; after deformation. Before deformation the curvature in the
circumferential direction is

The curvature of the element min, after deformation is

9w
oo 0 F G
I (a — w) de
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Hence the change in curvature is

Zw d
d“’+asz s_d 1 +6~w
Xe = la=w)de adp a dp?
By using the second of the equations (d) we can also write
1 /v *w
Xe = @ (érp + :9—¢_2> (h)

The bending moment producing this change in curvature is

D fav 9w
M, = “a—g(&;"‘w)

and the corresponding strain energy of bending per unit area can be calcu-
lated as in the discussion of plates (see page 46) and is equal to

D (v d2w\? D %w\? .
2" (&ﬁa—&) = é@(w*”ﬁ?) ®

In addition to bending, there will be a twist of each element such as
that shown at point O in Fig. 253. In calculating this twist we note that
during deformation an element of a generatrix rotates! through an angle
equal to —dw/dx about the y axis and through an angle equal to dv/dz
about the z axis. Considering a similar element of a generatrix at a
circumferential distance a de from the first one, we see that its rotation
about the y axis, as a result of the displacement w, is

_ow 9w i)
gz~ dpax’? . I
The rotation of the same element in the plane tangent to the shell is
v 9 (6%%)
=+ ——Ldyp

ox o

Because of the central angle d¢ between the two elements, the latter
rotation has a component with respect to the y axis equal to?

o
~ % de (k)

From results (5) and (k) we conclude that the total angle of twist between
the two elements under consideration is

a%w o
— Xzt dp = — <5“pm + O_L) de

! Tn determining the sign of rotation the right-hand screw rule is used.
? A small quantity of second order is neglected in this expression,
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and that the amount of strain energy per unit area due to twist is (see

page 47)
D1 - v) [ 0w w\?
2 (s, o) 0

a? do dx

Adding together expressions (z) and (!) and integrating over the surface
of the shell, the total strain energy of a cylindrical shell undergoing an
inextensional deformation is found to be

=2 [ (@ +22Y 420 - e (22 + 2) [adoas

Substituting for w and v their expressions (g) and integrating, we find for
a cylinder of a length 2! (Fig. 252) the following expression for strain
energy:

V = «Dl z ("2—;;—1)-2 ’n’ [aZ(az + ) + %lz(bﬁ + b;f)]

n=2

4201 = Dar®? + b:f)} @97)

This expression does not contain a term with » = 1, since the corre-
sponding displacements

v1 = a(ai cos ¢ — af sin @) (m)
w, = —a(a; sin ¢ + a] cos @)

represent the displacement of the circle in its plane as a rigid body. The
vertical and horizontal components of this displacement are found by
substituting ¢ = 7/2 in expressions (m) to obtain

W1)pmriz = —aa] (W1) gurjz = —aa

Such a displacement does not contribute to the strain energy.
The same conclusion can also be made regarding the displacements
represented by the terms with n = 1 in expressions (f).

Let us now apply expression (297) for the strain energy to the calculation of the
deformation produced in a cylindrical shell by two equal and opposite forces P acting
along a diameter at a distance ¢ from the middle! (Fig. 252). These forces prcduce
work only during radial displacements w of their points of application, %.e., at the
points z = ¢, ¢ =0, and ¢ = #. Also, since the terms with coefficients a, and b
in the expressions for w; and w. [see Eqs. (¢) and (f)] vanish at these points, only terms
with coefficients a., and b,, will enter in the expression for deformation. By using the

1 The case of a cylindrical shell reinforced by elastic rings with two opposite forces
acting along a diameter of every ring was discussed by R. S. Levy, J. Appl. Mechanics,
vol. 15, p. 30, 1948.
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principle of virtual displacements, the equations for calculating the coefficients o,
and b, are found to be

— éa, = —na sa,(1 + cos nr)P

S
|

~— &b, = —nc 8b. (1 + cos nw)P

Substituting expression (297) for V, we obtain, for the case where » is an even number,

B a?*P
a, = — ——————————
n(n? — 1) DI
s (n)
Y = — ncPa
" (n? — 1) Dl[§n? 4+ 2(1 — v)a?)
If n is an odd number, we obtain
a, =b, =0 ©

Hence in this case, from expressions (¢) and (f),

w = ia_’ ac cos ne
=Dl (n? — 1)2$n22 + 2(1 — v)a?]
n=246 ...

v = P_a’ 1 + nex . )
=Dl n(nt — 1) (02 — DRl + 2(1 — »a? sin ne P
n=2486,...

_ o L,
v =D =1 (= Dget + 20 = wat) ™

n=24,6,...

If the forces P are applied at the middle, ¢ = 0 and the shortening of the vertical
diameter of the shell is

2Pa? 1 Pas? .
—— e—— = (. 149 —

=Dl (n? — 1) 2Dl @
n=246,...

&= (w)«:-o + (w)¢=¢r =

The increase in the horizontal diameter is

2Py (=1)nizH1 Paq3
81 = —[(W)pansz + W) puznsa] = Dl Z (nt — 1)2 = 0.137 2Dl @
n=2486,...

The change in length of any other diameter can also be readily calculated. The same
calculations can also be made if ¢ is different from zero, and the deflections vary with
the distance z from the middle.

Solution (p) does not satisfy the conditions at the free edges of the shell, since it
requires the distribution of moments M. = »}, to prevent any bending in meridional
planes. This bending is, however, of a local character and does not substantially
affect the deflections () and (r), which are in satisfactory agreement with experiments.

The method just deseribed for analyzing the inextensional deformation of cylindrical
shells can also be used in calculating the deformation of a portion of a cylindrical
shell which is cut from a complete cylinder of radius a by two axial sections making



GENERAL THEORY OF CYLINDRICAL SHELLS 507

an angle a with one another (Fig. 255). For example, taking for the displacements

the series
ad bu . nhwe
U= - — —sin —
k: n a

nre nwe
a a, cos — + 2 by cos —
a o

wa . nme 7 4 . nwe
W= - — na, sin — — — nb, sin —
a L a -3 a

<
L]

we obtain an inextensional deformation of the shell such that the displacements «
and w and also the bending moments M, vanish along the edges mn and mins. Such
conditions are obtained if the shell is
supported at points m, n, mi, n; by bars
directed radially and is loaded by a
load P in the plane of symmetry. The
deflection produced by this load can be
found by applying the principle of
virtual displacements.

121. General Case of Deformation
of a Cylindrical Shell.! To establish
the differential equations for the dis-
placements «, », and w which define
the deformation of a shell, we proceed as in the case of plates. We begin
with the equations of equilibrium of an element cut out from the cylindri-
cal shell by two adjacent axial sections and by two adjacent sections
perpendicular to the axis of the cylinder (Fig. 253). The corresponding
element of the middle surface of the shell after deformation is shown in
Fig. 256a and b. In Fig. 256a the resultant forces and in Fig. 2560 the

FiG. 255

1 A general theory of bending of thin shells has been developed by A. E. H. Love;
see Phil. Trans. Roy. Soc. (London), ser. A, p. 491, 1888; and his book “Elasticity,”
4th ed., chap. 24, p. 515, 1927; see also H. Lamb, Proc. London Math. Soc., vol. 21.
For bending of cylindrical shells see also H. Reissner, Z. angew. Math. Mech., vol. 13,
p. 133, 1933; L. H. Donnell, NACA Repi. 479, 1933 (simplified theory); E. Torroja
and J. Batanero, “Cubiertos laminares cilindros,”” Madrid, 1950; H. Parkus, Osterr.
Ingr.-Arch., vol. 6, p. 30, 1951; W. Zerna, Ingr.-Arch., vol. 20, p. 357, 1952; P. Csonka,
Acta Tech. Acad. Sci. Hung., vol. 6, p. 167, 1953. The effect of a concentrated load
has been considered by A. Aas-Jakobsen, Bauingenieur, vol. 22, p. 343, 1941; by
Y. N. Rabotnov, Doklady Akad. Nauk S.8.8.R., vol. 3, 1946; and by V. Z. Vlasov,
“A General Theory of Shells,”” Moscow, 1949. For cylindrical shells stiffened by
ribs, see N. J. Hoff, J. Appl. Mechanics, vol. 11, p. 235, 1944; “ H. Reissner Anniver-
sary Volume,” Ann Arbor, Mich., 1949; and W. Schnell, Z. Flugwiss., vol. 3, p. 385,
1955. Anisotropic shells (together with a general theory) have been treated by
W. Fligge, Ingr.-Arch., vol. 3, p. 463, 1932; also by Vlasov, op. ¢it., chaps. 11 and 12.
For stress distribution around stiffened cutouts, see bibliography in L. 8. D. Morley’s
paper, Natl. Luchtvaarleb. Rappts., p. 362, Amsterdam, 1950. A theory of thick
cylindrical shells is due to Z. Bazant, Proc. Assoc. Bridge Structural Engrs., vol. 4, 1936.
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resultant moments, discussed in Art. 104, are shown. Before defor-
mation, the axes z, y, and z at any point O of the middle surface had the
directions of the generatrix, the tangent to the circumference, and the
normal to the middle surface of the shell, respectively. After defor-
mation, which is assumed to be very small, these directions are slightly
changed. We then take the z axis normal to the deformed middle sur-
face, the x axis in the direction of a tangent to the generatrix, which may
have become curved, and the y axis perpendicular to the zz plane. The

(5)
Fra. 256

directions of the resultant forces will also have been slightly changed
accordingly, and these changes must be considered in writing the equa-
tions of equilibrium of the element O ABC.

Let us begin by establishing formulas for the angular displacements of
the sides BC and AB with reference to the sides 04 and OC of the ele-
ment, respectively. In these calculations we consider the displacements
u, v, and w as very small, calculate the angular motions produced by
each of these displacements, and obtain the resultant angular displace-
ment by superposition. We begin with the rotation of the side BC with
respect to the side OA. This rotation can be resolved into three com-
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ponent rotations with respect to the z, y, and z axes. The rotations of
the sides OA and BC with respect to the x axis are caused by the dis-
placements v and w. Since the displacements » represent motion of the
sides OA and BC in the circumferential direction (Fig. 253), if a is the
radius of the middle surface of the cylinder, the corresponding rotation
of side 04 about the x axis is v/a, and that of side BC is

1 iz

s (v + P dx>
Thus, owing to the displacements », the relative angular motion of BC
with respect to OA about the z axis is

1 3w

20 dx (a)

Because of the displacements w, the side OA rotates about the x axis
through the angle dw/(a dy), and the side BC through the angle

ow 0 [ ow
ade T oz (m) dz

Thus, because of the displacements w, the relative angular displace-

ment is
d [ ow
P (a——a‘P) dx )

Summing up (a¢) and (b), the relative angular displacement about the
z axis of side BC with respect to side 04 is

1/ov 02w

a (55 T a¢> dz ©
The rotation about the y axis of side BC with respect to side O A is caused
by bending of the generatrices in axial planes and is equal to

a?*w
The rotation about the z axis of side BC with respect to side O A is due to
bending of the generatrices in tangential planes and is equal to

li k)

35 dx (e)
The formulas (¢), (d), and (e) thus give the three components of rotation
of the side BC with respect to the side OA.

Let us now establish the corresponding formulas for the angular dis-
placement of side A B with respect to side OC. Because of the curvature
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of the cylindrical shell, the initial angle between these lateral sides of the
element OABC is dp. However, because of the displacements v and w
this angle will be changed. The rotation of the lateral side OC about

the r axis is
v w

¢ ade

)

The corresponding rotation for the lateral side AB is
v ow d (v qw
E+ad<p %<E+ad¢>d¢
Hence, instead of the initial angle de, we must now use the expression
av 92w
de + do (m + m) ()

In calculating the angle of rotation about the y axis of side AB with
respect to the side OC we use the expression for twist from the preceding
article (see page 504); this gives the required angular displacement as

w v
- (o + ) e )
Rotation about the z axis of the side AB with respect to OC is caused by

the displacements » and w. Because of the displacement », the angle of
rotation of side OC is dv/dzx, and that of side AB is

v i) I
3z T aae <£) ade

so that the relative angular displacement is

a (dv .
a5 () ade G
Because of the displacement w, the side AB rotates in the axial plane
by the angle dw/dz. The component of this rotation with respect to the
z axis is

ow .
~ 3z de @)

Summing up (¥) and (j), the relative angular displacement about the
z axis of side AB with respect to side OC is

d% ow
(oazs — 35 ) ®
Having the foregoing formulas! for the angles, we may now obtain

three equations of equilibrium of the element OABC (Fig. 256) by pro-
jecting all forces on the z, y, and z axes. Beginning with those forces

1 These formulas can be readily obtained for a cylindrical shell from the general
formulas given by A. E. H. Love in his book ‘Elasticity,” 4th ed., p. 523, 1927.



GENERAL THEORY OF CYLINDRICAL SHELLS 511

parallel to the resultant forces N, and N,, and projecting them on the

z axis, we obtain

N, oN,.
e dz a do sy do dx

Because of the angle of rotation represented by expression (), the forces
parallel to N, give a component in the z direction equal to

%
—Ne <a¢ 9z ax> de dv

Because of the rotation represented by expression (¢), the forces parallel
to N,, give a component in the x direction equal to

—N,, 6 —; d:v ady
Finally, because of angles represented by expressions (d) and (h), the
forces parallel to Q. and @, give components in the z direction equal to

92w

Qg gar dvade = Q (a 3z

i
Regarding the external forces acting on the element, we assume that
there is only a normal pressure of intensity ¢, the projection of which
on the x and y axes is zero.

Summing up all the projections calculated above, we obtain

BN ‘oz

9%
ax ade +

de dx — N¢,<a(pax ax>d<pdx

*w
—Nz,,azdxad(p Qz dl‘adgo Q«, aga—a,t

v
+ ﬁ) dedx =0
In the same manner two other equations of equilibrium can be written.
After simplification, all three equations can be put in the following form:

dN, , N,
ax dp

ik
- Qz - Nz‘pa_xz

v 9w % ow
B Q”(%Jr axa¢> B N”(ax&p _£> =0

N, aN., 0% v w
g T TNegm ~ Q’<%+axa¢>

% dv 2w
+N“”<axa¢ ax) Q”( aa¢+a6<p2) =0

6Q, aQ«, D) w
+ % +N,¢(—+axa)+ aN. ¥

aQ

(298)

i} 1w
+N*”<1+E@+aa<p>+N‘”(%+axa>+qa_0
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Going now to the three equations of moments with respect to the z, y,
and z axes (Fig. 256b) and again taking into consideration the small angu-
lar displacements of the sides BC and AB with respect to 0A and OC,
respectively, we obtain the following equations:

aM,, oM, 620 %
* o a¢ o (ax ¥ ax> +aQ. =
oM,. % dw _
——_&p +a zwag—Mqa(axa?’_'g;)“an—O
M v *w M % (299)
z( +aza¢)+aszaz+ ¢z(1+aa¢+aa‘p2)

— M, (3“ +a‘i";’ ) +a(Ney — Npo) = 0
By using the first two of these equations! we can eliminate Q. and Q,
from Eqgs. (298) and obtain in this way three equations containing the
resultant forces N,, N,, and N., and the moments M., M,, and M,,.
By using formulas (253) and (254) of Art. 104, all these quantities can be
expressed in terms of the three strain components ¢, ¢,, and v., of the
middle surface and the three curvature changes xs x,, and xz.. By
using the results of the previous article, these latter quantities can be
represented in terms of the displacements u, v, and w as follows:?

Lo e _w _ou
° 7 9 Y T ade a Yoo = G0 T oz

_ dw 1 foy , ®w 1/ 9w (300)
Xe = 37 Xp=5§('5;+a—¢2> x””=5<_6§c+M)

Thus we finally obtain the three differential equations for the determi-
nation of the displacements u, v, and w.

In the derivation equations (298) and (299) the change of curvature
of the element O0ABC was taken into consideration. This procedure is
necessary if the forces N,, N,, and N, are not small in comparison with
their critical values, at which lateral buckling of the shell may occur.?
If these forces are small, their effect on bending is negligible, and we can
omit from Eqs. (298) and (299) all terms containing the products of the
resultant forces or resultant moments with the derivatives of the small
displacements u, », and w. In such a case the three Eqs. (298) and the

1 To satisfy the third of these equations the trapezoidal form of the sides of the
element 04 BC must be considered as mentioned in Art. 104. This question is dis-
cussed by W. Fligge, ‘“Statik und Dynamik der Schalen,” 2d ed., p. 148, Berlin, 1957.

2 The same expressions for the change of curvature as in the preceding article are
used, since the effect of strain in the middle surface on curvature is neglected.

3 The problems of buckling of cylindrical shells are discussed in 8. Timoshenko,
“Theory of Elastic Stability,”’ and will not be considered here.
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first two equations of system (299) can be rewritten in the following
simplified form:

N, , ONpe
aﬂax 3o 0
+ - Q=0
aQ” + aQ" +N,+qga=0 (301)
3M,¢ B a . _
o7 ———+aQ, =0
My, aM 0
de

Eliminating the shearing forces @, and @,, we finally obtain the three
following equations:

G Ns N o
ar ' dp
aN tia aNW 4 oM., _14M, _ (302)
ox a d¢
9 MW 82M M, 1M, _
Net 5r50 T2 027 “z0p Ta o2 T90=0

By using Eqgs. (253), (254), and (300), all the quantities entering in these
equations can be expressed by the displacements u, v, and w, and we
obtain

oy | 1 — ua"’u 14v 0% v dw

3 T o + 2a mw"&%‘o
1+ o +a1—vﬂ la_zg_la_w_
2 9z dy 2  9x? a6<p a d¢
h? dw d*w o
+ 12a< 22 Ao + a? 6<p3> 12a [(1 ) 6x2 a? 6¢2] =0 (303)
R T «w)
dr  ade a 12\ 7 ozt adx?dp? ' ad Jot
h* (2 — v % % \ _  aq(l — )
712 ( a 0x2d¢  ad aw) - Eh

More elaborate investigations show! that the last two terms on the
left-hand side of the second of these equations and the last term on the
left-hand side of the third equation are small quantities of the same order
as those which we already disregarded by assuming a linear distribution
of stress through the thickness of the shell and by neglecting the stretch-
ing of the middle surface of the shell (see page 431). In such a case it

1 8ee Vlasov, op. cit., p. 316, and, for more exact equations, p. 257.
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will be logical to omit the above-mentioned terms and to use in analysis
of thin eylindrical shells the following simplified system of equations:

%u 1 — vo2u 1+ » 0% vow _

T SaT 9t 20 Gzée ads °

14 v 1 — v 1 9% 1w

7 e T2 2 a2 T a9s gap =0 (304)
du @ _w k(0w 2 dw o aw)_ el =)
"ox Taoe a 12\%0zt T adxtagd | addei) Eh

Some simplified expressions for the stress resultants which are in
accordance with the simplified relations (304) between the displacements
of the shell will be given in Art. 125.

From the foregoing it is seen that the problem of a laterally loaded
cylindrical shell reduces in each particular case to the solution of a sys-
tem of three differential equations. Several applications of these equa-
tions will be shown in the next articles.

122. Cylindrical Shells with Supported Edges. Let us consider the
case of a cylindrical shell supported at the ends and submitted to the

BRI B
x- ———— - 0 g - K
H Y
v v
P .
(a) (b
Fia. 257

pressure of an enclosed liquid as shown in Fig. 257.! The conditions at
the supports and the conditions of symmetry of deformation will be
satisfied if we take the components of displacement in the form of the

following series:
z : T
u = E mn COS N cosT

v zz mn SID N SIiD T (a)
w = zz Cinn COS N sin T

in which [ is the length of the cylinder and ¢ is the angle measured as
shown in Fig. 257.2

1 See 8. Timoshenko, “Theory of Elasticity,” vol. 2, p. 385, St. Petersburg, 1916
(Russian).

2 By substituting expressions (a) in Eqgs. (300) it can be shown that the tensile
forces N, and the moments M. vanish at the ends; the shearing forces do not vanish,
however, since v., and M., are not zero at the ends,
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The intensity of the load ¢ is represented by the following expressions:

q = —~a(cos ¢ — cos a) when ¢ < a

¢g=0 when ¢ > o ®)

in which v is the specific weight of the liquid and the angle « defines the
level of the liquid, as shown in Fig. 257b. The load ¢ can be represented

by the series
qg= zz D, cos ne sin @ (¢

in which the coefficients D,., can be readily calculated in the usual way
from expressions (b). These coefficients are represented by the expression

_ 8va . _ .
D, = P e (cos a sin na — n cos na sin «) (@)
where m=135,... and n=234,...
4va , .
whereas Do = — pong (sin @ — a cos a) (e)
2va .
and A Dy = — o (2a — sin 2a) N

In the case of a cylindrical shell completely filled with liquid, we denote
the pressure at the axis of the ecylinder! by vd; then

g = —v({d+ acosy) 9
and we obtain, instead of expressions (d), (e}, and (f),

Dmn=0 Dm0=_'4ld' Dm1=__—
mn mr

)

To obtain the deformation of the shell we substitute expressions (a)
and (¢) in Eqgs. (304). In this way we obtain for each pair of values of
m and n a system of three linear equations from which the corresponding
values of the coefficients A, Bumn, and Cn, can be calculated.? Taking a
particular case in which d = a, we find that forn = Qandm = 1,38,5, . . .
these equations are especially simple, and we obtain

Bu=0 Cho= =T o= — =¥
3m [xzu — ) + % m41r4]
_ 2val*h 1 _h
where N = _‘II'2D A= E 7 ﬁ

!In a closed cylindrieal vessel this pressure can be larger than av.

2 Such calculations have been made for several particular cases by I. A. Wojtaszak,
Phil. Mag., ser. 7, vol. 18, p. 1099, 1934; see also the paper by H. Reissner in Z. angew.
Math. Mech., vol. 13, p. 133, 1933.
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For n = 1 the expressions for the coeflicients are more complicated. To
show how rapidly the coefficients diminish as m increases, we include in
Table 87 the numerical values of the coefficients for a particular case in
whicha = 50 ¢cm, I = 25 em, h =7 em, v = 0.3, and a = .

TasLe 87. THE VALUEs oF THE COEFFICIENTS IN EXPRrEssioNs (a)

2. 108 2. 108 2. 108 2.108 2.100
mo | Amm L O | A Bmi = Cmi 3R
1 57.88 —1,212. 49.18 —66.26 ~1,183
3 0.1073 —6.742 | 0.1051 ~0.0432 |~ 6.704
5 0.00503 —0.526 0.00499 —0.00122 |—  0.525

It is seen that the coefficients rapidly diminish as m increases. Hence,
by limiting the number of coeffi-
cients to those given in the table,
we shall obtain the deformation of
the shell with satisfactory acecuracy.

123. Deflection of a Portion of
a Cylindrical Shell. The method
used in the preceding article can
also be applied to a portion of a
cylindrieal shell which is supported
along the edges and submitted to
the action of a uniformly distrib-
uted load ¢ normal to the surface
(Fig. 258).! We take the compo-
nents of displacement in the form of the series

. nw mrx

u = zz A SIn B7P cos 7T
@ {

nre . max

v = 22 Bon €08 22 gin T (a)

P l

. nwe . MAX

w = zz Comn SID T(P sin ——

in which « is the central angle subtended by the shell and [ is the length
of the shell. It can be shown by substitution of expressions (a) in Egs.
(300) that in this way we shall satisfy the conditions at the boundary,
which require that along the edges ¢ = 0 and ¢ = a the deflection w,
the force N,, and the moment M, vanish and that along the edges x = 0
and z = ] the deflection w, the force N., and the moment M. vanish.

1 See Timoshenko, “Theory of Elasticity,” vol. 2, p. 386, 1916.
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The intensity of the normal load ¢ can be represented by the series

zz D, sin 2% sin 7% ()]

Substituting series (a) and (b) in Eqgs. (304), we obtain the following sys-
tem of linear algebraic equations for calculating the coeflicients A,un, B,
and Cpa:

A [(91—n> (_lﬂ] + B« (1 + v)amn + C,"m%@ =0

l 2al 2al
1 + »v)amn 1 — v)atm? | n? n _
Apuw T + Buaw “—*—“mz — + &_2 + Cun Z =0 (C)
w*h? fa*m? | n*\*| _ a*(l —»%)
Amn”"r +an—‘+0mn[l+12 2( lz +?) ]_Dﬂm Eh

To illustrate the application of these equations let us consider the case
of a uniformly distributed load! acting on a portion of a cylindrical shell
having a small angle o and a small sag f = a[l — cos («/2)]. In this
particular case expression (b) becomes

_ 16¢g . mmx . nme
q= 2 T, S0~ 80— (d)
1,35,... 1,35,...

and the coeflicients D,., are given by the expression

- 169
Dmn e W (e)
Substituting these values in Egs. (¢), we can calculate the coefficients
Amny Bmny and Crn,.  The calculations made for a particular case in which
aa = [ and for several values of the ratio f/h show that for small values
of this ratio, series (a) are rapidly convergent and the first few terms give
the displacements with satisfactory accuracy.

The calculations also show that the maximum values of the bending
stresses produced by the moments M, and M, diminish rapidly as f/h
increases. The calculation of these stresses is very tedious in the case of
larger values of f/h, since the series representing the moments become
less rapidly convergent and a larger number of terms must be taken.

The method used in this article is similar to Navier's method of calculating bending
of rectangular plates with simply supported edges. If only the rectilinear edges
¢ = 0and ¢ = « of the shell in Fig. 258 are simply supported and the other two edges
are built in or free, a solution similar to that of M. Lévy’s method for the case of
rectangular plates (see page 113) can be applied. We assume the following series
for the components of displacement:

t The load is assumed to act toward the axis of the cylinder.
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u = EU,,.sian
[+ 4

v = EV,,.cosm o
o

w = EWmsinw
a

in which U,, V., and W, are functions of z only. Substituting these series in
Egs. (304), we obtain for Un, Vm, and W,, three ordinary differential equations with
constant coefficients. These equations can be integrated by using exponential fune-
tions. An analysis of this kind made for a closed eylindrical shell! shows that the
solution is very involved and that results suitable for practical application can be
obtained only by introducing simplifying assumptions. It could be shown that each
set of the functions Um, V., Wn contains eight constants of integration for each
assumed value of m. Accordingly, four conditions on each edge 2 = constant must
be at our disposal. Let us formulate these conditions in the following three cases.

Built-in Edge. Usually such a support is considered as perfectly rigid, and the
edge conditions then are

u =0 v =0 w=0 — =0 (9)

Should it happen, however, that the shell surface on the edge is free to move in the
direction z, then the first of the foregoing conditions has to be replaced by the condi-
tion N, = 0.

Simply Supported Edge. Such a hinged edge is not able to transmit a moment
M, needed to enforce the condition gw/dz = 0. Assuming also that there is no edge
resistance in the direction z, we arrive at the boundary conditions

v=0 w=0 M,=0 N, =0 (k)

whereas the displacement u» and the stress resultants Nzq, M.y, and Q. do not vanish
on the edge.

The reactions of the simply supported edge (Fig. 259a) deserve brief consideration.
The action of a twisting couple M, ds, applied to an element ABCD of the edge, is
statically equivalent to the action of three forces shown in Fig. 259b. A variation of
the radial forces M., along the edge yields, just as in the case of a plate (Fig. 50), an
additional shearing force of the intensity —oM.,/ds, the total shearing force being
(Fig. 259c)

M.,

T = Qs
Q a d¢

@)
The remaining component M., de (Fig. 259b) may be considered as a supplementary
membrane force of the intensity M., de/ds = M.,/a. Hence the resultant mem-
brane force in the direction of the tangent to the edge becomes

M.,

a

S, = Nzw + (.7)

1 See paper by K. Miesel, Ingr.-Arch., vol. 1, p. 29, 1929. An application of the
theory to the calculation of stress in the hull of a submarine is shown in this paper.
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Free Edge. Letting all the stress resultants vanish on the edge, we find that the
four conditions characterizing the free edge assume the form

N, =0 M, =0 S:=0 T,=0 (k)

where S, and T’ are given by expressions (j) and (z), respectively.!

124. An Approximate Investigation of the Bending of Cylindrical Shells. From the
discussion of the preceding article it may be concluded that the application of the
general theory of bending of cylindrical shells in even the simplest cases results in
very complicated calculations. To make the theory applicable to the solution of
practical problems some further simplifications in this theory are necessary. In con-
sidering the membrane theory of eylindrical shells it was stated that this theory
gives satisfactory results for portions of a shell at a considerable distance from the
edges but that it is insufficient to satisfy all the conditions at the boundary. It is
logical, therefore, to take the solution furnished by the membrane theory as a first

/

/ z
g LN

/ M“P+ 3s ds

/ / X

= fi‘ﬂrﬁi —

?

Fra. 259

approximation and use the more elaborate bending theory only to satisfy the condi-
tions at the edges. In applying this latter theory, it must be assumed that no external
load is distributed over the shell and that only forces and moments such as are neces-
sary to satisfy the boundary conditions are applied along the edges. The bending
produced by such forces can be investigated by using Eqgs. (303) after placing the
load ¢ equal to zero in these equations.

In applications such as are encountered in structural engineering? the ends z = 0
and z = [ of the shell (Fig. 260) are usually supported in such a manner that the

1 For a solution of the problem of bending based on L. H. Donnell's simplified
differential equations see N. J. Hoff, J. Appl. Mechanics, vol. 21, p. 343, 1954; see also
Art. 125 of this book.

2 In recent times thin reinforced cylindrical shells of concrete have been successfully
applied in structures as coverings for large halls. Descriptions of some of these
structures can be found in the article by F. Dischinger, “ Handbuch firr Eisenbeton-
bau,” 3d ed., vol. 12, Berlin, 1928; see also the paper by F. Dischinger and U. Finster-
walder in Bauingenieur, vol. 9, 1928, and references in Art. 126 of this book.
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displacements » and w at the ends vanish. Experiments show that in such shells
the bending in the axial planes is negligible, and we can assume M, = 0 and Q. = 0
in the equations of equilibrium (301). We can also neglect the twisting moment .
Wiih these assumptions the system of Egs. (301) can be considerably simplified, and

Fi16. 260

the resultant forces and components of displacement can all be expressed in terms! of
moment M,. From the fourth of the equations (301) we obtain

aM,
de

Q=1 @
a

Substituting this in the third equation of the same system, we obtain, for ¢ = 0,

0, _ _ 1M,

b
d¢ a Jdp? ®

Ny = —

The second and the first of the equations (301) then give

Nz 1 aN,\ _ 1 [oM, M,

a a (Q¢ e > T a? ( ¢ + 8p? ©
PN, 18N.,  1[aM, ‘M, @
or? a ¢ oz ad \ dp? et

The components of displacement can also be expressed in terms of M, and its deriva-
tives. We begin with the known relations [see Eqgs. (253) and (254)]

ou 1
“ = @M
ou w 2+
Tee TG d¢ oz Eh Ny ©
- w 1
“=aae o m NN

! This approximate theory of bending of cylindrical shells was developed by U.
Finsterwalder; see Ingr.-Arch., vol. 4, p. 43, 1933.
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From these equations we obtain

ou

'5; = ETh (N — »Ny)
% 1 6Nw 1 (8N, aN,
= = 2 — I 3
pyws [ (A 4w —=F — - < Pk )] (f)

9* 1 9N, N 9N, *N. N
T alw» - +2(1+y)____w_1 BN_VG ?
dx2 Eh dx? 92 Iz e a \ d¢p? dp?

Using these expressions together with Egs. (b), (c), and (d) and with the expression
for the bending moment

M, = - 2(2 2 o)

¢ a? \ d¢ dp? g

we finally obtain for the determination of M, the following differential equation of the
eighth order:

aM, *»M, *M, M,
+<2+V)a26105 2?"4'(1‘!'2")(14 o7 ok
M, M, aM 4, M,
+ 22 + »)a? 9% 0pt + P + va“a 60 ,+a+ v)’a a¢=
MM, PM,
+ @+ et 7 1
A particular solution of this equation is afforded by the expression
M, = Ae*# sin —”—L;r—x @)
Substituting it in Eq. (k) and using the notation
mra .
=2 @

l
the following algebraic equation for calculating « is obtained:
of +12 = (2 + )Na® + {(1 4 200 — 2(2 + )22 + 1]t
L= (1 )N = @ et + 12— ) S =0 ()
The eight roots of this equation can be put in the form
arzage = (v £ 261) agens = (v k 18s) o

Beginning with the edge ¢ = 0 and assuming that the moment M, rapidly diminishes
as ¢ increases, we use only those four of the roots (!) which satisfy this requirement.
Then combining the four corresponding solutions (z), we obtain

= [¢~719(C} cos Bip + C: sin B1gp) + e 729(C; co8 B0 + C, sin Bop)] sin Z (m)

which gives for ¢ = 0

= (Ci -+ Ca) sin me:
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If instead of a single term (7) we take the trigonometric series

M, = 2 A ,.e%n? sin ﬁ‘lﬂ (n)

any distribution of the bending moment M, along the edge ¢ = 0 can be obtained.
Having an expression for M ,, the resultant forces @,, N, and N, are obtained from
Eqgs. (a), (b), and (c).

If in some particular case the distributions of the moments M¢ and the resultant
forces Q4, Ny, and N, along the edge ¢ = 0 are given, we can represent these dis-
tributions by sine series. The values of the four coefficients in the terms containing
sin (mwz/l) in these four series can then be used for the calculation of the four con-
stants Cy, . . ., C4 in solution (m); and in this way the complete solution of the
problem for the given force distribution can be obtained.

If the expressions for u, v, and w in terms of M, are obtained by using Eqs. (f), we
can use the resulting expressions to solve the problem if the displacements, instead
of the forces, are given along the edge ¢ = 0. Examples of such problems can be
found in the previously mentioned paper by Finsterwalder,! who shows that the
approximate method just described can be successfully applied in solving important
structural problems.

125. The Use of a Strain and Stress Function. In the general case of bending of
a cylindrical shell, for which the ratio {/a (Fig. 260) is not necessarily large, the effect
of the couples M, and M., cannot be disregarded. On the other hand, the simplified
form [Eqgs. (304)] of the relations between the displacements allows the introduction
of a function? F(z,p) governing the state of strain and stress of the shell. Using the
notation
82 62

A= — + — (a)

hz
cZ - ==
3t | gt

T 122

& =

Q18

we can rewrite Eqs. (304) in the following form, including all three components X, Y,
and Z of the external loading,

%u 1 — »d% 14+» oW ow (1 — a2
g 2 ag 2 otop ot Eh
14+ 3% % 1 —vd® ow (1 — »?)a?
— — —— = - —— Y 305
2 3tdp I 2 982 9de Eh (305)
ou I (1 — »¥)a?
— = —w—cAAW = — —— 7
v Py + %0 w c w Eh

The set of these simultaneous equations can be reduced to a single differential equation
by putting

R Ik 4
u = -y —
BE 6<p2 14 823 Uo
*F aF (306)
v = _0—¢p“—(2+”)5§"7+ o
w = —AAF + wo

! [bid.

2 Due to Vlasov, op. cit. Almost equivalent results, without the use of a stress
function, were obtained by L. H. Donnell, NACA Rept. 479,1933. See also N. J. Hoff,
J. Appl. Mechanics, vol. 21, p. 343, 1954,
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where uo, vo, wo are a system of particular solutions of the nonhomogeneous equations
(305). As for the strain and stress function F(&¢), it must satisfy the differential
equation

1 -2

AaAMF + =25 20 = 0 307)

which is equivalent to the group of Eqgs. (305),if X =Y = Z = 0.* It can beshown
that in this last case not only the function F but also all displacement and strain
components, as well as all stress resultants of the shell, satisfy the differential equa-
tion (307).

For the elongations, the shearing strain, and the changes of the curvature of the
middle surface of the shell, the expressions (300) still hold. The stress resultants
may be represented either in terms of the displacements or directly through the func-
tion F. In accordance with the simplifications leading to Eqgs. (304), the effect of
the displacements u and » on the bending and twisting moments must be considered
as negligible. Thus, with the notation

Eh Ehs

“1-» Pma-m (308)

the following expressions are obtained:

No=Eja, (2 _ Eh oF
=T o TN\Ge TY) | T @ o

K w
N¢=_<3_”_w+,%)=§l“’_ (309)

a \ 8¢ 13

wo, K= (ou @) _ _Bh o¥
# 9 3¢ T g a8 de

a
D [ d*w a*w D { 92
M= - 2(220 4,2 28 4, & ) par
T e (asz +”a¢2> a* (as2 +"a‘p2)

M D 62w+ 9w _D
¢T Ta\ag Tap ) T a2

a2 a2
— +v -—) AAF (310)
D

@311

Representing the differential equation (307) in the form
F
(Q)F + 444 T =0 ®)

4 — a2
where T =4 ,?’(Li{"_l‘_’_ (c)

* Further stress functions F,, F,, F, were introduced by Vlasov, op. cit., to represent
the particular integral of Eqs. (305) if X, Y, or Z, respectively, is not zero.
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we see that Eq. (307) is also equivalent to the group of four equations

o aFn
AFniv(lit)a—E=0 @)
withi = v/ —landn = 1, 2, 3, 4. Putting, finally,
F, = ¢-dra+oip,
F, = dva+oip,
Fy = edra—oig, (@
F, = elra-itp,

for the four new functions ®, a set of four equations
APy + iy = 0 6]

is obtained, in which for the constant u, we have to assume

== = o VET =)
a @
mo= o= o VB - )

The form of each of the equations (f) is analogous to that of the equation of vibration
of 2 membrane. In comparison with Eqs. (d), Eqs. (f) have the advantage of being
invariant against a change of coordinates on the cylindrical surface of the shell.

X 22> >
JlJl(J!)/JlJI

126. Stress Analysis of Cylindrical Roof Shells.! Three typical roof layouts are
shown in Figs. 261 and 265. The shells may be either continuous in the direction z
or else supported only twice, say in the planes z = 0 and z = 1. We shall confine
ourselves to the latter case. We suppose the supporting structures to be rigid with

1 Bee also “Design of Cylindrical Concrete Shell Roofs,”” ASCE Manuals of Eng.
Practice, no. 31, 1952; J. E. Gibson and D. W. Cooper, “The Design of Cylindrical
Shell Roofs,” New York, 1954; R. 8. Jenkins, “Theory and Design of Cylindrical
Shell Structures,” London, 1947; A. Aas-Jakobsen, ‘‘Die Berechnung der Zylinder-
shalen,” Berlin, 1958. Many data on design of roof shells and an interesting compari-
son of different methods of stress analysis may be found in Proceedings of a Symposium
on Concrete Shell Roof Construction, Cement and Concrete Association, London, 1954,
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respect to forces acting in their own planes, £ = constant, but as perfectly flexible
with respect to transverse loading. In Fig. 261a the tension members at ¢ = ¢, are
flexible, whereas the shells shown in Figs. 2615 and 265 are stiffened by beams of
considerable rigidity, especially so in the vertical plane.

Any load distribution over the surface of the shell may be represented by the mag-
nitude of its three components in the form of the series

3

)\m
X = E X,,.(tp) COSTI

m=1
Y = z Ym(o) sin x—;‘—" (a)
m=1
Z- z Zn(p) sin 2%
a
m=1
in which
xm - mra (b)

T
Likewise, let us represent the particular solutions wug, ve, wo in expressions (306) in
the form
L]
AnZ
u = Uon(e) cos —
a
m=1
- xm
vo = Vom(e) sin Tz ()

m=1

o= ) Wonle)sin %’”

mm=]

Expressions for the stress resultants N, and M., obtained from these series by means of
Eqs. (309) and (310), in which ¢ = z/a, show that the conditions (k) of Art. 123 for
hinged edges are fulfilled at the supportsz = Oand 2z = .

In order to obtain the general expressions for the displacements in the case

X=Y=2=0
we make use of the resolving function F (Art. 125) by taking it at first in the form

Fn= e“vsin%'z @

Substitution of this expression in the differential equation (307) yields the following
characteristic equation for «:

(a* — ALY + l—g,—"’x,‘,, =0 @©
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in which ¢? = h2/12a2. The eight roots of this equation can be represented in the
form

a1 = 71 + 98, as = —ao
a; = 1 — 1B, ag = —a
ag = 72 + 182 ar = —a3 @
@y = vz — 182 as = —ay
with real values of v and 8. Using the notation
P
1 — »? )\f,l
= Vin po = ()
we obtain
71—7\/ L+o/D+1+1+p2
72—7_\/\/<1—a VD +1-(-52
h)
1 2
Br=—L
Y1 8
1 2
B = — L

Returning to the series form of solution, we find that the general expression for the
stress function becomes

F= z o) sin 2% )
a

m=1
where fm(e) = Cime*1? + Cope®® + - - - + Cygmes® @
and Cim, Com, . . . are arbitrary constants.

We are able now to calculate the respective displacements by means of the rela-
tions (306). Adding to the result the solution (c), we arrive at the following expres-
sions for the total displacements of the middle surface of the shell:

©

74 Am
u = (S + ¥X frn + Uom) cos —a—x
m=1
14 117 x
v = z (2 + N f — f + Vomlsin - (k)
m=1
’e v . AmT
w = z O\ for — [ = A fm + Wom) sin —
a

m=1

where primes denote differentiation with respect to ¢.
The strain and stress components now are obtained by means of expressions (300),
(309), (310), and (311). In the most general case of load distribution four conditions
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on each edge ¢ = +¢o are necessary and sufficient to calculate the constants Cn,
., Cmg associated with each integer m = 1,2,3, . . . .
As an example, let us consider the case of a vertical load uniformly distributed
over the surface of the shell. From page 460 we have

X=0 Y =psine Z = pcos ¢ )

Hence the coefficients of the series (a) are
defined by

) S
2 ! A
Xpn == Xcos—afdx=0 r &
1 Jo a VA
2 [ A 4 VA
Vo =- Y sin —m——zdz = —Esin e (m) "{‘.“\
I Jo a mr V\‘n'
7 "o
V4 2 [ Z sin At d. 4p co!
" = = in — dxr = — cos
7o p o (4 F1G. 262
inwhichm =1,3,5, . ... An appropriate particular solution (c) is given by
Usm = Aom €08 ¢ Vom = Bom sin ¢ Wom = Com €OS ¢ (n)

The coefficients Aom, Bom, and Com are readily obtained by substitution of the expres-
sions (c), (n), and (m) in Egs. (305).

To satisfy the conditions of symmetry with respect to the meridian plane ¢ = 0, a
suitable form of the function (j) is

fm(e) = Aim cos Bi1¢ cosh vi¢p + Aam sin Bie sinh vi¢ 4+ A3m €Os B2¢ cosh yip
+ A 4m Sin B2¢ sinh y2e  (0)

in which By, 82, v1, and v, are defined by the expressions (k) and m = 1,3,5, . . . .

In order to formulate the edge conditions on ¢ = ¢ in the simplest way, let us
write the expressions for the vertical and horizontal components of the edge displace-
ment and of the membrane forces on the edge as well (Fig. 262). We obtain

n = v 8in @o + W COS o (p1)
§ = v cos go — W SiN ¢ (p2)
. oM £
V = Nysin ¢ + (Qw + 6:: )cos v (p3)
oM 'z B
H = N,cos o — <Q¢ + —‘6.: ) sin o (p4)

Finally, the rotation of the shell with respect to the edge line is expressed by

ow

v
; + @ ‘a' » (ps)

x =
In all terms on the right-hand side of the foregoing expressions we have to put ¢ = go.
The following three kinds of edge conditions may be considered in particular.

Roof with Perfectly Flexible Tension Rods (Fig. 26la). Owing to many connected
spans supposed to form the roof, the deformation of the roof can be considered as
symmetrical with respect to the vertical plane through an intermediate edge ¢ = + ¢,
where the displacement § and the rotation x must vanish. Hence
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€08 po — wsin ¢o = 0 (g
ow

v+ — =0 (g2
d¢

on ¢ = po. Letting Qo be the weight of the tension rod per unit length, we have, by
Eq. (ps), a further condition
2V = Qo (29

in which Q,, if constant, can be expanded in the series

4 1 . Amz
Qo = 4Q — sin — (pe)
L4 n a

m=135,...

Finally, the elongation e, of the shell on the edge ¢ = o must be equal to the elonga-
tion of the tension member. If 4, denotes the cross-sectional area of the latter and
E, the corresponding Young modulus,! then we have, for ¢ = ¢,

i z du
— | oNpndz ==
E oA 0 ﬁ N¢ * ox (q‘)

in which the integral represents the tension force of the rod.

The further procedure is as follows. We calculate four coefficients Aim, . . . , Aum
foreachm = 1,3,5, . . . from the conditions (¢1), . . . , (gs). The stress function F
is now defined by Egs. (0) and (7), and the respective displacements are given by the
expressions (306) or (k). Finally, we obtain the total stress resultants by means of
expressions (309) to (311), starting from the known displacements, or, for the general
part of the solution, also directly from the stress function F.

Roof over Many Spans, Stiffened by Beams (Fig. 261b). 'The conditions of symmetry

¥ COS o — W Sin g = 0 (ry)
9
and v+ =0 (r2)
[

on ¢ = g, are the same as in the preceding case. To establish a third condition, let
Qo be the given weight of the beam per unit length, ko its depth, E¢l, the flexural
rigidity of the beam in the vertical plane, and 4, the cross-sectional area. Then the
differential equation for the deflection » of the beam becomes
diy ho ON 4z

EOIOJE—QO_2V+2_§ oz (rs)
the functions %, V, and @, being given by the expressions (p1), (ps), and (ps), respec-
tively. The last term in Eq. {r;) is due to the difference of level between the edge
of the shell and the axis of the beam. As for the elongation e of the top fibers of the
beam, it depends not only on the tension force but also on the curvature of the beam.
Observing the effect of the curvature d?y/dx? we obtain in place of Eq. (g the

condition
2 z ho d2 3
/;Nwzdz+_o_zl‘=_" (7'4)

EoA [} 2 d$2 Jz

! In the case of a tension member composed of two materials, say steel and concrete,
a transformed cross-sectional area must be used.
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The further procedure of analysis remains essentially the same as in the foregoing
case.

The distribution of membrane forces and bending moments M, obtained! for the
middle span of a roof, comprising three such spans in all, is shown in Fig. 263. In the
direction z the span of the shell is I = 134.5 ft, the surface load is p = 51.8 psf, and
the weight of the beam Qo = 448 1b per ft. Stress resultants obtained by means of
the membrane theory alone are represented by broken lines.

£
N
=
-741 1b/in? (Y
(=1 =
£z
w
<
E (Gl 1 E
; E) £
L
858 1b/in?

One-span Roof, Stiffened by Beams (Fig. 265). In such a case we have to observe
not only the deflection of the beam, given by the edge displacements » and 3, but the
rotation of the beam x as well (Fig. 264). The differential equation for the vertical
deflection is, this time, of the form

’Lo aN’Z

d4y _ _
Eo’oa“—Qo V+ 3 oz (1)

t By Finsterwalder, loc. cit., using the method described in Art. 124; see also Proc.
Intern. Assoc. Bridge Structural Engrs., vol. 1, p. 127, 1932.
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the notation being the same as in the previous case. The horizontal deflection is
governed in like manner by the equation

d ho
Eolod 4< —xg) = —H (39

in which Eol; denotes the flexural rigidity
of the beam in the horizontal plane,
whereas §, x, and H are given by the
expressions (ps), (ps), and (pJ).

The condition of equilibrium of couples
acting on an element of the beam and
taken about the axis of the beam (Fig.
264) yields a further equation

aM Hh

—— g tTM,=0 ®

dz
where M, is the torsional moment of the
beam. Now, the relation between the
moment M, the twist § = dx/dz, and

Fic. 264 the torsional rigidity Co of the beam is
d
M, =C X @)
dx

Substituting this in Eq. (), we obtain the third edge condition

d*x  Hhe
C@—7+M¢=O (8;)

in which x is given by the expression (ps) and ¢ = ¢o.

The elongation e, of the top fibers of the beam due to the deflection & may be
neglected, the average value of ¢ through the thickness of the beam being zero.
Therefore, the condition (r,) of the foregoing case can be rewritten in the form

ho d N ou
Ng.d - = — s
EOA/ Bt T w ®)
Again the remaining part of the stress analysis is reduced to the determination of the
constants Aim, . . . , Ain for each m =1, 8, 5, . . . from Egs. (s1) to (s4) and to

the computation of stresses by means of the respective series.

Figure 265 shows the stress distribution in the case of a shell with [ = 98.4 ft and
oo = 45°. It is seen in particular that the distribution of the membrane stresses o,
over the depth of the whole beam, composed by the shell and both stiffeners, is far
from being linear. However, by introducing & = 0 as the edge condition instead of
the condition (sz), an almost linear stress diagram 2 could be obtained. If we sup-
pose, in addition, that the rotation x vanishes too, we arrive at a stress distribution
given by curve 3.*

* For particulars of the calculation see K. Girkmann, “Flichentragwerke,” 4th ed.,
p. 499, Springer-Verlag, Vienna, 1956. The diagrams of Figs. 265 and 263 are
reproduced from that book by permission from the author and the publisher.
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Various simplifications can be introduced into the rather tedious procedure of stress
calculation described above.

Thus, if the ratio l/a is sufficiently large, the stress resultants M., @., and M., can
be disregarded, as explained in Art. 124. Again, the particular solution (c) may be
replaced by a solution obtained directly by use of the membrane theory of cylindrical

-176 1b/in2

W\
B

Shell

(1) A3}
r ¥9

2,
N,

( 2?% (0=

—
+1148 Ib/in2

Beom

(Np)x =l

40 | b-in/in.

0.41b/in.

Fic. 265

shells (Art. 112). The corresponding displacements, needed for the formulation
of the boundary conditions, could be obtained from Egs. (309). The method con-
sidered in Art. 124 is simplified still more if from all derivatives with respect to ¢
needed to represent the strain and stress components, only those of the highest order
are retained.!

On the other hand, the procedure of the stress computation can be greatly reduced
by use of special tables for strain and stress components due to the action of the edge

t See H. Schorer, Proc. ASCE, vol. 61, p. 181, 1935.
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forces on the cylindrical shell.! A method of iteration? and the method of finite
differences® have also been used in stress analysis of shells.

If edge conditions on the supports £ = 0, z = ! of the shell are other than those
assumed on page 524, the stress disturbance arising from the supplementary edge
forces would require special investigation.?

Provided I/a is not small, the roof shell may also be considered primarily as a beam.®
Various methods of design of such a beam are based on different assumptions with
respect to the distribution of membrane forces N, over the depth of the beam. A
possible procedure, for example, is to distribute the membrane forces along the contour
of the shell according to the theory of elasticity and to distribute them along the
generatrices according to the elementary beam theory.

In the case of very short roof shells continuous over many supports, the edge condi-
tions on ¢ = + ¢ become secondary, and a further simplification of the stress analysis
proves possible.®

So far only circular cylindrical shells have been considered; now let us consider
a cylindrical shell of any symmetrical form (Fig. 266). Given a vertical loading
varying only with the angle ¢, we always can obtain a
cylindrical surface of pressure going through the gen-
eratrices A, C, and B. If, for instance, the load is
distributed uniformly over the ground plan of the shell,
the funicular curve ACB would be a parabola. Now
suppose the middle surface of the shell to coincide with
the surface of pressure due to a given load. The total
load then is transmitted by the forces N, toward the

Fa. 266 edges A and B of the shell to be carried finally by the

side beams over the whole length of the cylinder. If,

instead, we want the load to be transmitted toward the end supports of the shell by

the action of the membrane forces N, and N.,, a shell contour overtopping the
funicular (thrust-line) curve must be chosen (Fig. 266).

From the relation N, = —Za [see Eqgs. (270)] we also conclude that for a vertical
load, i.e., for Z = p, cos ¢, we have N, = —p,a cos ¢, where p, is the intensity of the
load. Therefore the ring forces N, on the edge vanish only when ¢o = =/2, that is,
when the tangents to the contour line of the shell are vertical at the edges 4 and B.
This condition is satisfied by such contours as a semicircle, a semiellipse, or a cycloid,”
which all overtop the pressure line due to a uniformly distributed load.

1Such tables (for » = 0.2) are given by H. Lundgren in his book “Cylindrical
Shells,”” vol. 1, Copenhagen, 1949. For tables based on a simplified differential
equation, due to L. H. Donnell, see D. Riidiger and J. Urban, ‘‘ Kreiszylinderschalen,”
Leipzig, 1955. See also references, page 524.

2 A. Aas-Jakobsen, Bauingenieur, vol. 20, p. 394, 1939.

¢ H. Hencky, “Neuere Verfahren in der Festigkeitslehre,”” Munich, 1951. For the
first application of the method to stress analysis of shells, see H. Keller, Schweiz.
Bauztg., p. 111, 1913. The relaxation method has been applied to stress analysis of
shells by W. Fligge, ‘Federhofer-Girkmann-Festschrift,” p. 17, Vienna, 1950.

4By application of Miesel’s theory, op. cit., or by an approximate method due to
Finsterwalder, op. cit.

& This approach has especially been used by A. Aas-Jakobsen, op. cit., p. 93.

¢ See B. Thiirlimann, R. O. Bereuter, and B. G. Johnston, Proc. First U.S. Natl.
Congr. Appl. Mech., 1952, p. 347. For application of the photoelasticity method to a
cylindrical shell (tunnel tube), see G. Sonntag, Bauingenieur, vol. 31, p. 408, 1956.

? For membrane stresses in shells of this kind see, for example, Girkmann, op. cil.,
and A. Pfliger, “Elementare Schalenstatik,” Berlin, 1957. The bending of semi-
elliptical shells was considered by A. Aas-Jakobsen, Génie civil, p. 275, 1937. For
other shapes of cylindrical roofs, see E. Wiedemann, Ingr.-Arch., vol. 8, p. 301, 1937.

Funicular
curve
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