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Introduction

Humans suffer from numerous parasitic food-borne parasitic
zoonoses, many of which are caused by trematodes (phylum
Platyhelminthes: Digenea). In fact, more than 100 species of
food-borne trematodes are known to infect humans, including
liver flukes, lung flukes, and intestinal flukes. Food-borne
trematode infections are one major group of the so-called
neglected tropical diseases worldwide, with more than 40
million people infected and more than 10% of the world’s
population at risk [1–4]. In the past, these infections were
limited, for the most part, in populations living in low-
income countries, particularly in Southeast Asia, and were
associated with poverty. However, the geographical limits
and the population at risk are currently expanding and chang-
ing in relation to factors such as growing international markets,
improved transportation systems, and demographic changes.

Despite the considerable public health impact and the
emerging nature of the food-borne trematodiases, they are
orphans with regard to research funding and presence in the
press media [5–7]. In this sense, it should be noted that,
although there is an increasing interest on neglected tropical
diseases, with regard to food-borne trematodiases, a number
of control campaigns have been stopped and these diseases are
not included in the priority list of the World Health Organiza-
tion (WHO). Moreover, the difficulties of diagnosis, the com-
plexities of human cultural behaviors, and poor knowledge of
the potential economic consequences of these infections im-
pede research on this topic, especially in developed countries.

The list of potential food-borne trematodes that might be
discussed in a review is quite large. In the present review,
we summarize the key characteristics of the major liver
(clonorchiasis, opisthorchiasis, and fascioliasis), lung (para-
gonimiasis), and intestinal (diplostomiasis, echinostomiasis,
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Abstract Food-borne trematodiases constitute an important
group of the most neglected tropical diseases, not only in
terms of research funding, but also in the public media. The
Trematoda class contains a great number of species that
infect humans and are recognized as the causative agents
of disease. The biological cycle, geographical distribution,
and epidemiology of most of these trematode species have
been well characterized. Traditionally, these infections were
limited, for the most part, in populations living in low-
income countries, particularly in Southeast Asia, and were
associated with poverty. However, the geographical limits
and the population at risk are currently expanding and
changing in relation to factors such as growing international
markets, improved transportation systems, and demographic
changes. The diagnosis of these diseases is based on para-
sitological techniques and only a limited number of drugs
are currently available for treatment, most of which are
unspecific. Therefore, in-depth studies are urgently needed
in order to clarify the current epidemiology of these hel-
minth infections and to identify new and specific targets for
both effective diagnosis and treatment. In this review, we
describe the biology, medical and epidemiological features,
and current treatment and diagnostic tools of the main
groups of flukes and the corresponding diseases.



fasciolopsiasis, gymnophalloidiasis, and heterophyiasis)
food-borne trematodiases. We highlight the life cycles, epi-
demiology and impact, clinical aspects, pathology, and new
methods of diagnosis and experimental treatment of these
infections.

Taxonomy and general morphology

Food-borne trematodes are classified into the phylum
Platyhelminthes, class Trematoda, and subclass Digenea.
The systematics of these flukes are being investigated
and debated thoroughly; the digenetic trematodes con-
stitute the largest group of Platyhelminthes. Table 1
shows the taxonomy of the main species covered in this
review.

Adult digeneans are characterized by a dorsoventral,
flattened, bilaterally symmetrical body. Usually, there are
two suckers; an anterior oral sucker surrounding the mouth
and a ventral sucker, sometimes termed the acetabulum, on
the ventral surface. The oral sucker surrounds the mouth,
while the ventral sucker is a blind muscular organ with no
connection to any internal structure. The tegument, a syn-
cytial epithelium, is implicated in nutrient absorption, syn-
thesis, secretion, and osmoregulation, and has sensory
functions [8]. Most Digenea are hermaphroditic. The female
reproductive system consists of an ovary, oviduct, some-
times a seminal receptacle (in which sperm from the copu-
latory partner is stored), ootype (where the egg is formed)
surrounded by Mehlis’ gland, yolk gland (vitellarium)
which opens into the ootype or near it, and the uterus, in
which eggs mature. The uterus opens through a common
gonopore together with the male system. The male system
consists of one testis, or several testes, and sperm ducts
which unite and widen terminally to form a seminal vesicle
often enclosed in a cirrus pouch. The average size of the
flukes varies according to species.

General biology

Within their definitive hosts, food-borne trematodes can be
found in practically every organ (liver, lungs, blood system,
and the alimentary tract and its ducts), and have indirect and
complex life cycles involving a number of diverse larval
types (see Fig. 1).

Usually, there are seven developmental stages (i.e., adult,
egg, miracidium, sporocyst, redia, cercaria, and metacercaria)
with alternations of asexual and sexual reproductive phases in
the molluscan and definitive host. The life cycle of the major
food-borne trematodes include two or three different hosts: a
vertebrate definitive host, including humans; an invertebrate
first intermediate host (a mollusk); and, frequently, a second

Table 1 Taxonomy up to the generic level of the trematodes causing
major food-borne diseases

Phylum Platyhelminthes

Subphylum Neodermata

Class Trematoda

Subclass Digenea

Order Echinostomida
(Echinostomatida)
Family Cathaemasiidae

Genus: Cathaemasia

Family Echinostomatidae

Genera: Acanthoparyphium,
Artyfechinostomum,
Echinochasmus,
Echinoparyphium, Episthmium,
Euparyphium, Himashtla,
Hypoderaeum and Isthmiophora

Family Fasciolidae

Genera: Fasciola, Fascioloides
and Fasciolopsis

Family Gastrodiscidae

Genus: Gastrodiscoides

Family Paramphistomidae

Genus: Fischoederius

Family Psilostomidae

Genus: Psilorchis

Order Diplostomida

Family Diplostomidae

Genera: Fibricola
and Neodiplostomum

Family Strigeidae

Genus: Cotylurus

Order Opisthorchiida

Family Heterophyidae

Genera: Centrocestus, Haplorchis,
Heterophyes, Heterophyopsis,
Metagonimus, Phagicola,
Procerovum, Pygidiopsis,
Stellantchasmus and Stictodora

Family Opisthorchiidae

Genera: Clonorchis
and Opisthorchis

Order Plagiorchiida

Family Gymnophallidae

Genus: Gymnophalloides

Family
Lecithodendriidae

Genera: Phaneropsolus
and Prosthodendrium

Family Microphallidae

Genus: Spelotrema

Family Paragonimidae

Genus: Paragonimus

Family Plagiorchiidae

Genus: Plagiorchis

1706 Eur J Clin Microbiol Infect Dis (2012) 31:1705–1718



intermediate host carrying the encysted metacercarial
stage. Eggs are produced by adult worms following
sexual reproduction in the final host, which are humans
or wild and domestic animals. Eggs are released via
feces (most of the human food-borne trematodes) or
sputum (Paragonimus spp.). The eggs of some digenetic
trematodes are fully developed when laid, whereas
others require some time for embryonation. Eggs require
appropriate environmental conditions for embryonation.
The egg releases a swimming ciliated larva, the miracidium,
which actively penetrates the snail intermediate host or is
ingested by the host. In some cases, the eggs are directly
ingested by the intermediate host and the miracidia hatch in
the gastrointestinal tract of the snail. Various snail species act
as the first intermediate host, most of which are trematode
species-specific.

Asexual reproduction occurs for several weeks in the snail
first intermediate host. Miracidia develop into sporocysts, but,
in some cases, the miracidia directly give rise to redia. The
germinal cells within the sporocysts produce new germinal
masses which produce daughter sporocysts or rediae.
The development of sporocysts and rediae follows different

patterns depending on the digenean species [4]. Finally, these
larval stages produce cercariae. The free-swimming cercariae
escape from the host and either come in contact with a com-
patible second intermediate host in which they penetrate and
encyst (e.g., Clonorchis sinensis, Echinostoma spp., or Opis-
thorchis spp.) or encyst on aquatic vegetation, such as water-
cress, water lotus, water caltrop, water chestnut, or water lily
(e.g., Fasciola hepatica or Fasciolopsis buski) (Fig. 1).
Numerous invertebrates and poikilothermal vertebrates serve
as the second intermediate host. Several fish species, crusta-
ceans, snails, and tadpoles have been reported to act as the
second intermediate host. Human and animal definitive hosts
become infected when eating raw, pickled, or insufficiently
cooked second intermediate hosts harboring metacercariae,
aquatic vegetation, or even drinking contaminated water [9,
10]. After ingestion, metacercariae excysts in the gastrointes-
tinal tract release a juvenile worm which migrates to the target
organ. Infection with Paragonimus spp. might also occur
through the consumption of undercooked meat of wild boar,
which act as a paratenic host [11]. The survival of the adult
worms in the definitive host may vary from days to several
years [2].

Fig. 1 Schematic representation of the life cycle patterns of the causative
species of major food-borne trematodes with emphasis on the source of
transmission to humans: 1. Clonorchis sinensis; 2. Opisthorchis spp.; 3.
Fasciola spp.; 4. Paragonimus spp.; 5. Neodiplostomum seoulense; 6.

Echinostomatidae; 7. Fasciolopsis buski; 8. Gymnophalloides seoi; 9.
Heterophyidae; 10. some trematodes, including Fasciola spp. and Echi-
nostomatidae, can infect humans by the ingestion of water contaminated
with metacercariae

Eur J Clin Microbiol Infect Dis (2012) 31:1705–1718 1707



Global impact of food-borne trematodes

The transmission of food-borne trematodes is restricted to
areas where the first and second intermediate hosts coexist
and where humans have the habit of eating raw, pickled, or
undercooked fish and other aquatic products. This determines
the focal distribution of the food-borne trematode infections
[1, 3].

Despite their importance, the global burden of the food-
borne trematode infections has remained unknown since
recent years. In fact, these infections were disregarded in the
estimations of theWHO from the mid-1990s to 2004 [12, 13].
In recent years, several studies in relation to neglected diseases
have been reporting interesting data on this issue.

The number of infected people varies depending on the
trematode species (Table 2). The global estimate for the
number of people infected with C. sinensis is 35 million
[9, 14]. More than 20 million people are infected with
Paragonimus spp. [11]. For O. viverrini, it is estimated that
10 million people are infected [15]. Estimates for Fasciola
spp. range from 2.4 to 17 million people [2]. Approximately
1.2 million people are infected with O. felineus [16]. An
estimated 40 to 50 million people are infected with species
of intestinal flukes [17]. However, these estimations only
constitute a small part of the problem since the worldwide
population at risk is considerably higher (Table 2).

Clonorchiasis and opisthorchiasis

The fish-borne liver flukes,Opisthorchis viverrini,O. felineus,
and Clonorchis sinensis, have close morphological and

biological characteristics. Both genera belong to the family
Opisthorchiidae and the differentiation of the species is based
on several characteristics of the adult worms, such as the size,
shape and position of the testes, and the arrangement of the
vitelline glands [16].

The life cycle of Opisthorchis spp. and C. sinensis is
shown in Fig. 1. These species follow a three-host life cycle.
Embryonated eggs are released and ingested by Bithynia
spp. and hatch. Sporocysts give rise to redia and, in turn,
to cercaria. The free-living cercariae may penetrate and
develop in several species of freshwater fishes of the family
Cyprinidae where they encyst. Humans become infected
after the consumption of raw or undercooked fish harboring
infective metacercariae. Adult worms inhabit the intrahe-
patic bile duct, but they can also be found in the common
bile duct, cystic duct, and even in the gallbladder.

These liver flukes are endemic in Asia and Eastern Europe
[3, 16]. C. sinensis is widespread in the People’s Republic of
China (PR China), Korea, and North Vietnam, while O. viver-
rini is endemic in Southeast Asia, including Thailand, Laos
People’s Democratic Republic (PDR), Cambodia, and Central
Vietnam [3]. O. felineus is found in Russia and, possibly,
Eastern Europe [16]. In addition to these endemic areas,
the migration of people has expanded the parasite dis-
tribution. Furthermore, there are some reports in other
areas but only some of them are thought to be locally acquired
[17, 18].

Most chronic human opisthorchiasis and clonorchiasis
cases show few specific signs or symptoms, except an
increased frequency of palpable liver [19]. Among patients
of clonorchiasis with a very high worm burden (up to
25,000 flukes), acute pain in the right upper quadrant may

Table 2 Habitat, infection sources, number and infections, population at risk, and treatment of choice of major food-borne trematodes and their
underlying diseases

Species Habitat Source of infection Number of
infections (106)a

At-risk
population (106)a

Treatment (dose)

Clonorchis sinensis Liver Freshwater fish 601 601 Praziquantel (3×25 mg/kg for 2 days
or single dose of 40 mg/kg)

Opisthorchis spp. Liver Freshwater fish 11.2 79.8 Praziquantel (3×25 mg/kg for 2 days
or single dose of 40 mg/kg)

Paragonimus spp. Lung Freshwater crabs,
crayfish, wild
boar meat

20.7 292.8 Praziquantel (3×25 mg/kg for 2 days)

Echinostomatidae Intestine Freshwater fish, frogs,
mussels, snails,
tadpoles

Not known Not known Praziquantel (single dose of 25 mg/kg)

Gymnophalloides
seoi

Intestine Oysters Not known Not known Praziquantel (single dose of 10 mg/kg)

Heterophyidae Intestine Freshwater fish Not known Not known Praziquantel (single dose of 25 mg/kg)

Fasciola spp. Liver Freshwater vegetables,
contaminated water

2.4-17 2.4-17 Triclabendazole (single dose of 10 mg/kg
or 20 mg/kg in two split doses
within 12-24 h)

ªBased on data from references [1, 2]
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also appear [9]. Severe opisthorchiasis may cause obstruc-
tive jaundice, cirrhosis, cholangitis, acalculous cholecystitis,
or bile peritonitis [1].

Cholangiocarcinoma is the most serious complication of
infections with O viverrini and C. sinensis. O. viverrini is
classified by the International Agency for Research on
Cancer (IARC) as definitely carcinogenic (class 1) and
C. sinensis as a probable carcinogen (class 2A) [20–22].
Cholangiocarcinoma is a malignant tumor starting in the
epithelium of the intrahepatic biliary tree and might invade the
sinusoids of the liver parenchyma [16]. The prognosis of this
tumor is extremely poor [23]. Although the etiology is not
entirely known, many factors are likely to be involved in
carcinogenesis involving mechanical and chemical irritation
of the tissue by the fluke and immune responses [16, 21, 23].

Patients infected with O. felineus suffer from fever to
hepatitis-like symptoms in the acute stage of the infection.
Chronic symptoms include obstruction, inflammation, and
fibrosis of the biliary tract, liver abscesses, pancreatitis, and
suppurative cholangitis [23].

Fascioliasis

F. hepatica and F. gigantica are the causative agents of liver
fluke disease (fascioliasis) in domestic animals and humans.
Both species follow a two-host life cycle. The eggs, released
by the adults residing in the bile ducts of the mammalian host,
are carried into the intestine and are passed in the feces.
Embryonation and hatching occurs in freshwater. The free-
swimming miracidia find and penetrate the molluscan inter-
mediate host: F. hepatica typically infectsGalba truncatula in
Europe and parts of Asia, whereas F. gigantica can infect a
wide range of snail species, including Lymnaea natalensis in
Africa and L. rubiginosa in Asia [24]. Within the digestive
gland of the infected snail, the parasite undergoes a series of
developmental stages (sporocyst–rediae–cercaria). The free-
swimming cercariae adhere to and encyst, as metacercariae,
on vegetation. Following ingestion of the contaminated veg-
etation, the parasite excysts in the small intestine and juvenile
worms penetrate through the gut wall and enter the peritoneal
cavity. After 10–12 weeks of migration, the parasites enter the
bile ducts, where they mature [25, 26].

Fascioliasis is now recognized as an important emerging
zoonotic disease of humans [27]. The contamination sources
of human infection are the ingestion of wild and cultivated
freshwater and terrestrial plants (common and wild water-
cress, dandelion, leaves, lamb’s lettuce, spearmint, algae,
kjosco, totora) [28]. Drinking beverages made from local
plants and drinking untreated water directly or in dishes and
soups and washing kitchen utensils or other objects with
contaminated water may be several sources of human infec-
tion due to the presence of free-floating metacercarial cysts

[28, 29]. The majority of reported human cases of fascioliasis
are due to infections with F. hepatica, though some reports
indicate a rise in human infections with F. gigantica [30].

The highest prevalence of human fascioliasis is found in
the Altiplan region of Northern Bolivia [31]. Hyperendemic
human fascioliasis has also been reported in the Nile Delta
region between Cairo and Alexandria and several provinces
of Northern Iran [32, 33]. In Europe, human fluke infections
occur more sporadically, though outbreaks of the disease in
France, Portugal, and Spain have been reported [30]. Sporadic
cases have also been reported in the USA [18].

Two different phases can be distinguished in the fasciolia-
sis: acute and chronic fascioliasis [26, 34]. Acute fascioliasis,
corresponding with the migratory stages of the life cycle, is
characterized by fever, abdominal pain, hepatomegaly, and
other gastrointestinal symptoms resulting from the destruction
of liver tissues by the migratory flukes. Chronic fascioliasis,
corresponding with the presence of the adult worms in the bile
ducts, is often subclinical or show symptoms indistinguish-
able from other hepatic diseases, such as cholangitis, chole-
cystitis, and cholelithiasis [26]. Few human deaths have been
reported in relation to fascioliasis [26, 35].

Paragonimiasis

Paragonimiasis is the disease caused by lung flukes of the
genus Paragonimus. There are about 15 species of Paragoni-
mus known to infect humans. P. westermani is the most
common worldwide, while P. heterotremus is the etiological
agent of human paragonimiasis in PR China, Laos PDR,
Vietnam, and Thailand [3, 11]. Other species of Paragonimus
are reported to infect humans in other locations such as Asia,
West Africa, and America [11].

Humans become infected after the ingestion of raw or
undercooked freshwater crustaceans, such as crabs, shrimp,
or crayfishes. The metacercariae excyst in the small intestine
and penetrate through the intestinal wall into the abdominal
cavity, prior to migration through the subperitoneal tissues,
the muscle, the liver, the diaphragm, and, finally, enters the
lung, where maturation occurs. Adult flukes lay eggs, which
are coughed up and ejected by spitting with the sputum or
swallowed and passed in the feces. After hatching, miracidia
invade freshwater snails, mainly of the genus Semisulcospira,
and a series of developmental stages (sporocyst–rediae–
cercaria) occur within the snail and, finally, the cercariae
emerge. Crustacea probably acquire the infection by consum-
ing cercariae or eating infected snails containing the fully
developed cercariae (Fig. 1).

About 20million people are infectedwith lung flukes and an
estimated 293million people are at risk of infection [1]. Human
paragonimiasis occurs in three endemic focal areas: Asia (PR
China, Japan, Korea, Laos PDR, Philippines, Vietnam, Taiwan,

Eur J Clin Microbiol Infect Dis (2012) 31:1705–1718 1709



and Thailand), South and Central America (Ecuador, Peru,
Costa Rica, and Columbia), and Africa (Cameroon, Gambia,
and Nigeria) [3, 36, 37]. Endemic areas can be identified as the
people who eat raw, pickled, and semi-cooked freshwater
species of crabs, shrimps, and crayfishes. The sources of infec-
tion in the endemic areas have been recently reviewed by Sripa
et al. [3].

The main pathological signs induced by Paragonimus spp.
are due to the mechanical damage caused by the migration of
the worm from the gut to the lungs and the toxins and other
mediators released by the migratory parasites. Furthermore,
ectopic migrations to aberrant sites including the brain and
subcutaneous sites at the extremities may occur [11]. The
flukes in the lung cause hemorrhage, inflammatory reaction
and necrosis of lung parenchyma, and fibrotic encapsulation.
There are several signs that allow to characterize the acute and
chronic paragonimiasis. In pulmonary paragonimiasis, the
most noticeable symptom is a chronic cough with brown
and blood-streaked pneumonia-like sputum. Moreover,
hemoptysis is commonly induced by heavy work. When
symptoms include only a chronic cough, the paragonimiasis
can be confused with a chronic bronchitis or bronchial asthma
[3]. In extrapulmonary paragonimiasis, the symptoms vary in
relation to the location of the fluke, including cerebral and
abdominal paragonimiasis [3, 11].

Intestinal food-borne trematodiases

The intestinal food-borne trematodes category constitutes a
large assemblage of species that induce parasitic zoonoses.
Collectively, these parasites have a major impact on the
health and economy in developing countries of the tropics
and subtropics in Asia, Africa, Europe, and the Americas
[3]. A total of 70 species (14 families and 36 genera) of
intestinal flukes have been isolated from humans [17]. Herein,
we summarize the main characteristics of diplostomiasis,
echinostomiasis, fasciolopsiasis, gymnophalloidiasis, and het-
erophyiasis that can be considered as the major intestinal
food-borne trematodes.

Diplostomiasis

The family Diplostomidae contains digeneans from numerous
orders of birds and mammals, but at the intestinal level, only
Neodiplostomum seoulense and Fibricola cratera parasitize
humans. In general, species of the Diplostomidae have a
three-host life cycle. Fork-tailed cercariae are produced in
sporocysts in the gastropod first intermediate host. The
cercariae emerge from the snails and penetrate and form
metacercariae in fishes, amphibians, molluscs, and annelids
[38]. Definitive hosts become infected by the ingestion of
the second intermediate host or the paratenic host harboring

metacercariae. Eggs typically hatch and penetrate the first
intermediate host [39].

Human infections with N. seoulense have been reviewed
by Chai and Lee [39] and Fried et al. [40]. A total of 28 human
cases have been reported in the Republic of Korea, but none in
other countries [38]. This species was first implicated when an
infected humanwas found to be suffering from severe enteritis
with abdominal pain, fever, diarrhea, fullness, and anorexia.
The patient had a history of eating raw snakes, which appears
to be the most important food source for human infections
[41]. The estimation of the total number of human cases in the
Republic of Korea is about 1,000 [39]. More anecdotal is the
human infection with F. cratera, a trematode species indige-
nous to North America [18].

Echinostomiasis

The family Echinostomatidae contains a rather heterogeneous
group of cosmopolitan and hermaphroditic digeneans that
parasitize, as adults, numerous vertebrate hosts of all classes
[42]. Adult echinostomatids are predominantly found in birds,
but also parasitize mammals and, occasionally, reptiles and
fishes. The main distinguishing feature of the Echinostomati-
dae is the presence of a circumoral collar armed with one or
two ventrally interrupted crowns of spines.

Members of the Echinostomatidae follow a three-host life
cycle. The first intermediate hosts are aquatic snails in
which a sporocyst, two generations of rediae, and cercariae
develop. Emerged cercariae infect the second intermediate
host, which may be several species of snails, clams, frogs,
and even fishes. The definitive host becomes infected after
ingestion of the second intermediate host harboring the
encysted metacercariae [42–44].

The distribution of echinostomes is ubiquitous. The current
incidence of human echinostomiasis is difficult to determine
with any accuracy because of the unavailability of epidemio-
logical surveys and most of the data rely on historic surveys
and occasional case reports. The distribution of human echi-
nostomiasis is strongly determined by the dietary habits.
Humans become infected when they eat raw or inadequately
cooked food, especially fish, snakes, amphibians, clams, and
snails, containing encysted echinostome metacercariae [42].
Moreover, it has been postulated that humans can also be
infected by drinking untreated water containing echinostome
cercariae, which could become encysted when exposed to the
human gastric juice [45]. Infections are, thus, most prevalent
in areas where traditional cultural practices encourage the
ingestion of raw or undercooked fish, frogs, snakes, or snails
and bivalves or drinking tainted water. Hence, the disease
distribution is highly focal, though occasional cases can also
occur [1].

Although echinostomiasis occurs worldwide, most human
infections are reported from foci in East and Southeast Asia.
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Echinostomiasis is relatively rare, yet, the foci of transmission
remain endemic owing to the local dietary preferences. Most
of these endemic foci are localized in Cambodia, China, India,
Indonesia, Korea, Malaysia, Philippines, Russia, Taiwan, and
Thailand [46–48]. Moreover, occasional cases have also been
reported in other countries.

The number and identity of the echinostome species caus-
ing human echinostomiasis is uncertain in relation to the
absence of systematic surveys and occasional case reports.
Moreover, the problematical taxonomy of the group compli-
cates further the specific diagnosis of the worms found in
humans [46]. Haseeb and Eveland [47] listed a total of 21
species infecting humans belonging to eight genera of
Echinostomatidae (Artyfechinostomum, Echinochasmus,
Echinoparyphium, Echinostoma, Episthmium, Himasthla,
Hypoderaeum, and Paryphostomum). Chai [46] listed 20
species belonging to nine genera (Acanthoparyphium,
Artyfechinostomum, Echinochasmus, Echinoparyphium,
Echinostoma, Episthmium, Himasthla, Hypoderaeum,
and Isthmiophora) that have been found parasitizing humans.

Major clinical symptoms due to echinostome infection
may include abdominal pain, diarrhea, easy fatigue, and loss
of body weight [44, 49–51]. The symptoms in echinosto-
miasis seem to be more severe than those observed in other
intestinal trematode infections [46]. Human morbidity is due
to the prolonged latent phase, symptomatic presentations,
and similarity of symptoms with other intestinal helminth
infections [50, 52]. Clinical symptoms depend on the parasite
load [39]. Heavy infections are associated with eosinophilia,
abdominal pain, watery diarrhea, anemia, edema, and anorexia
[53]. Pathological damage includes catarrhal inflammation,
erosion, and even ulceration [50].

Fasciolopsiasis

This helminth infection is caused by an intestinal fluke,
Fasciolopsis buski, belonging to the family Fasciolidae.
This trematode species shares a similar morphology and life
cycle to Fasciola spp. (Fig. 1). The final host range of F.
buski is limited and many mammals are refractory to infec-
tion. Humans become infected through the consumption of
viable metacercaria on the seed pods, bulbs, stems, or roots
of water plants. Metacercariae excyst in the duodenum and
the juvenile worms attach to the duodenal and jejunal wall,
where they develop into adult worms. Eggs are large and
operculate. If the eggs reach freshwater sources, embryona-
tion occurs over a period of 3–7 weeks and, then, miracidia
hatch and penetrate snail intermediate hosts of the family
Planorbidae (especially in the genera Segmentina, Hippeutis,
and Gyraulus). After transformation and asexual multiplica-
tion as sporocysts, rediae, and cercariae, free-swimming cer-
cariae attach and encyst on the seed pods of any freshwater
plant surface [3].

F. buski infection is largely confined to Asian countries,
namely, southern PR China, India, Bangladesh, Thailand,
Malaysia, Borneo, Sumatra, and Myanmar, and may reach
high prevalences [3, 17]. Human infections are associated
with the consumption of freshwater vegetables. Vegetables
in endemic foci are confined to low-lying land where
susceptible snail hosts abound. The highest prevalences
occur in areas with the cultivation or year-round availabil-
ity of water caltrops and other aquatic vegetation and
where people enjoy eating water chestnuts. Community-
based prevalences in endemic areas generally reach 20%
and children are often more frequently and heavily
infected than adults, since they usually eat water plants
during play [2, 3].

In general, symptoms of fasciolopsiasis are absent or
mild, but may include chronic diarrhea, abdominal colic,
hunger pains, flatulence, vomiting, eosinophilia, and fever.
The abdominal pain may be due to duodenal ulcer caused by
mechanical damage. Patients may pass stools containing
large amounts of undigested material. Some deaths have
been reported in long-standing heavy infection with intestinal
obstruction [3, 17].

Gymnophalloidiasis

The family Gymnophallidae consists of a small group of
digeneans occurring in the intestine, gall bladder, and
bursa Fabricii of birds and also in the intestine of mam-
mals. Although the number of genera included within this
family varies greatly [54], a recent revision of the family
accepts a total of five valid genera (Gymnophalloides,
Parvatrema, Gymnophallus, Pseudogymnophallus, and
Bartolius) [55]. A typical gymnophallid life cycle involves
bivalves as the first intermediate host, and bivalves, poly-
chaetes, gastropods, or brachiopods as the second inter-
mediate hosts. The definitive host becomes infected after
ingestion of the second intermediate host harboring the
metacercariae [54].

Within the Gymnophallidae, studies on the pathology and
immunology of the infection are available for only one
species, Gymnophalloides seoi. This is a minute intestinal
fluke that has been reported from humans in Korea [39, 55].
The first intermediate host of G. seoi is unknown, but a
second intermediate host is the oyster Crassostrea gigas.
Humans, the oystercatcher (Haematopus ostralegus), and
wading birds are natural definitive hosts [54].

Human infections with G. seoi have only been recorded
in Korea [54, 56]. G. seoi was first discovered in a woman
who suffered from acute pancreatitis and gastrointestinal
discomfort [56]. G. seoi is highly prevalent among villagers
in the southwestern coastal islands of Korea, where half of
the population was infected [57]. They became infected by
consuming raw oysters [54].
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Heterophyiasis

The family Heterophyidae contains small egg-shaped trem-
atodes with infective metacercariae that are usually encysted
in fish second intermediate host. The definitive host becomes
infected by eating raw or poorly cooked fish harboring
metacercariae. Heterophyids show little specificity toward
the definitive host and numerous fish-eating mammals, includ-
ing humans, can be infected. The adult worms live between the
villi of the anterior region of the small intestine and release
fully embryonated eggs into water. The eggs are then ingested
often by littorine snails (particularly Littorina littorea and L.
scutulata), and hatch within the snail’s intestine.

Although there are a great number of genera within the
Heterophyidae, most of the studies in relation to human
infections of these infections are focused on Metagonimus
yokogawai. This species parasitizes humans in Asia [17, 39],
and its life cycle can be maintained easily in the laboratory in
various experimental hosts, thus, facilitating studies on
heterophyids.

Human infections by heterophyids have been often
reported. Chai and Lee [39] listed 12 species of heterophyids
that parasitize humans in Korea belonging to the genera,
including: Metagonimus, Heterophyes, Stictodora, Hetero-
phyopsis, Pygidiopsis, Stellantchasmus, and Centrocestus.
Moreover, members of the genera Haplorchis, Phagicola,
and Procerovum have also been implicated in human hetero-
phyiasis [40]. The most prevalent species in humans are M.
yokogawai and H. heterophyes, which are distributed mainly
in Asia, Africa, and Eastern Europe [39, 40].

Humans become infected by eating raw, pickled, or poorly
cooked fish. Low-grade infections are of no clinical conse-
quence, but cases with heavy infections are associated with
diarrhea, mucus-rich feces, abdominal pain, dyspepsia,
anorexia, nausea, and vomiting [39, 40, 58]. Anaphylactic
reactions have also been reported [58]. Occasionally, worm
eggs may enter the circulatory system though the crypts of
Lieberkühn, causing emboli whichmay be fatal, depending on
the affected tissue [58].

Diagnosis

The diagnosis of food-borne trematode infections can be
accomplished by several approaches and have been recently
reviewed [59].

Demonstration of eggs in feces, bile, duodenal fluids, or
sputum (in the case of Paragonimus spp.) is the gold stan-
dard diagnosis. Parasitological examination of fecal samples
provides routine diagnosis and is widely used. The most
frequently employed methods to detect eggs are Kato–Katz
thick smear, Stoll’s dilution, and the formalin ethyl acetate
concentration technique [59]. However, the similarity of the

eggs of trematodes sometimes makes the specific diagnosis
difficult.

Apart from traditional methods, several immunologi-
cal tests have been developed for several trematode
species. In Opisthorchis and Clonorchis infections, good
results have been obtained using individual antigens
detecting isotype-specific antibodies [60]. Fecal antigen
detection by enzyme-linked immunosorbent assay (ELISA)
also shows promise [61–63]. Recently, Huang et al. [64]
developed a polymerase chain reaction (PCR) assay with a
detection limit of a single egg of C. sinensis in human feces.
Real-time PCR has also been developed [65]. Furthermore,
Arimatsu et al. [66] developed a method based on loop-
mediated isothermal amplification (LAMP), allowing
the detection of 10−3 ng ofO. viverriniDNA in 1 μl of human
feces.

Several ELISAs for the detection of antibodies against F.
hepatica have been developed [67–69]. An accurate serolog-
ical test using recombinant cathepsin L has been developed
and can be applied to blood samples placed onto filter paper.
This method has been validated in various endemic regions
[69].

A recombinant antigen of P. westermani eggs has been
tested as an ELISA antigen offering high levels of sensitivity
and specificity [70]. Immunoblotting assay for the detection of
IgG4 to excretory/secretory products of P. heterotremus pro-
vides a sensitive and specific method for diagnosis [71].
Recently, Doanh et al. [72] developed a PCR method based
on the amplification of the ITS-2 region. Using this method, a
single parasite egg of Paragonimus is detected in human
sputum. A method of LAMP for the detection of adults of P.
westermani has been developed [73]. This technique provides
approximately 100 times greater sensitivity than conventional
PCR.

Lee et al. [74] used an ELISA method to detect metagoni-
miasis in humans with metacercarial crude antigens. Of the 11
metagonimiasis sera, 10 became positive to the analysis.
However, cross-reactivity with other trematodiases such as
fascioliasis, schistosomiasis, and paragonimiasis was
detected. AWestern blot study showed also a high degree of
cross-reactivity [75]. Ditrich et al. [75] developed indirect
ELISA and Western blot methods to detect H. taichui in
humans using cytoplasmic and membranous antigens from
adult worms. ELISA analysis showed that cytoplasmic anti-
gens were more sensitive, but cross-reactions between both
species were found.

Analytical methods of foods

Methods for the detection of food-borne trematodes have
expanded from traditional microscopic methods to include
such molecular techniques as PCR. Although the identification
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of worms remains as the gold standard method for the detec-
tion of trematodes in food, molecular and immunological tools
are being progressively incorporated.

The detection and identification of tissue-encysted meta-
cercariae rely heavily on morphological characterization by
visual inspection and the use of methods ranging from direct
tissue examination to mechanical or enzymatic tissue dis-
ruption. The examination of metacercariae in the second
intermediate host, mainly in fishes, is commonly performed
by two methods, i.e., muscle compression and pepsin-HCl
artificial digestion [76]. In the compression technique, a
sample of flesh from different parts of fish (e.g., head, gill,
muscle, fin, scale, intestine, other viscera) or other host is
compressed between two glass slides and examined under
the stereomicroscope with 20- to 100-fold magnification.
The artificial digestion method in more complicated, but a
detailed description of the method can be found in the work
by Sohn [76]. Unfortunately, there are no developed
methods for the detection of metacercariae in plants
and the developed methods are focused on tissue-encysted
metacercariae.

For the specific (or generic) identification of the
metacercariae, they should be observed in detail under
a light microscope and, if possible, identified based on
characteristic features and dimensions. As the character-
istic features, the shape of the cysts, presence and size
of suckers and spines, and shape and contents of the
excretory bladder are important [76]. If the morpholog-
ical features are not obvious and difficult to see, they
should be encysted. When the cyst wall is very thin, the
metacercariae can be easily released with slight pres-
sure. However, if the cyst is thick, artificial digestion is
recommended. There are several methods available for
the digestion of the metacercarial cysts and, basically,
they involve metacercarial incubation in trypsin or bile at 37°C
[77, 78]. A key for the identification of the metacercariae can
found by Sohn [76].

The application of molecular methods for the detection
of metacercariae in foods is still very limited. However,
in recent years, a number of species-specific PCR-based
methods are being developed that are capable of detect-
ing and differentiating trematode species from intermedi-
ate hosts. These methods are rapid and provide increased
discriminatory power and the ability to analyze small
amounts of sample. Moreover, they negate morphological
investigation of the intermediate host for the presence of
metacercariae. For example, a tandem repeated DNA
sequence has been described and used to detect metacer-
cariae of E. caproni from snail tissues. This methodology
could be used in other intermediate hosts such as fishes
[78]. Moreover, some of the molecular methods described
above for human diagnosis can be alternatively used in
food samples [63, 73, 79, 80].

Current treatment

Praziquantel is the drug of choice for the food-borne tremato-
diasis, except for fascioliasis. Praziquantel exhibits a broad
spectrum activity against trematodes and has an excellent
safety profile [81]. All treatment schedules with praziquantel
are well tolerated, with only a few adverse events, including
abdominal pain, dizziness, headache, nausea, and urticaria
[81]. The doses employed for the different trematode infec-
tions are shown in Table 2. There are no reports of food-borne
trematodes resistant to praziquantel. However, a low cure rate
has been found in patients with clonorchiasis in a small study
in Vietnam [82].

Triclabendazole, a benzimidazole derivative, is used for
the treatment of fascioliasis and holds promise for the treat-
ment of paragonimiasis. Currently, triclabendazole is regis-
tered for human use only in Ecuador, Egypt, France, and
Venezuela, and the doses employed are shown in Table 2.
Abdominal pain, biliary colic, fever, nausea, vomiting,
weakness, and liver enlargement have been reported as
adverse reactions. There are some concerns that triclabenda-
zole resistance might emerge, since it has been reported in
veterinary medicine [81]. Bithionol also can be used
against fascioliasis when triclabendazole is not available.
However, long treatment schedules of 10 to 15 days are
required [81].

Experimental drugs in development

The limited number of available drugs for food-borne trem-
atodiases, together with the concerns in relation to the devel-
opment of resistance against these drugs, makes necessary the
search for alternative drugs. In this context, preliminary studies
have shown that a number of compounds might be further
developed for the treatment of food-borne trematodiases.

Compound alpha is a novel flukicide that has been shown
to have a high level of activity against all stages of F. hepatica.
It is a derivative of triclabendazole and has a similar range of
activity against F. hepatica [82–88]. It kills flukes from 3 days
to 12 weeks, fulfilling the criterion of efficacy against both
acute and chronic fascioliasis [88]. As occurs with other
anthelmintic molecules of the benzimidazole class, compound
alpha is likely to act as a β-tubulin antagonist. It interferes
with the assembly of microtubules, which have an essential
role in the movement of subcellular components and metab-
olites within the cytoplasm, as well as the spindle formation
during cell division. Apart from structural changes, compound
alpha affects the reproductive structures and spermiogenesis
of F. hepatica [89–91]. Although compound alpha has shown
a high level of efficacy against isolates of F. hepatica suscep-
tible to triclabendazole, it was not effective against resistant
isolates, which raises some concerns on its utility [88, 91].
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Artemisinin, the active constituent of the herb Artemisia
annua, is a sesquiterpene lactone that contains an unusual
peroxide bridge. Artemisinin and its derivatives have been
extensively used as anti-malaric drugs. In recent years, the
activity of artemisinin and its derivatives, including arte-
mether, artesunate, and dihydroartemisinin, against food-
borne trematodes has been investigated in vitro and in vivo.
Although the exact mechanism of action of the artemisinins
is not well known, their mode of action appears to be related
to the peroxide bridge that undergoes reductive activation
by heme released by the Plasmodium, which leads to
carbon-centered free radicals or carbocations [92]. In trem-
atodes, it has been shown that artemether disrupts the tegu-
ment [2]. Treatment with these drugs resulted in significant
reductions of the worm burden of C. sinensis in rats [93, 94].
Artemether and artesunate have also been screened in ham-
sters, showing significant reductions of worm burden [93].
Complete healing of E. caproni infections was achieved in
mice using a single oral dose of 200 mg/Kg [95]. Recently,
artesunate has been successfully studied against hetero-
phyids in experimentally infected mice [96]. With regard
to F. hepatica, artesunate and artemether showed a high
degree of activity in chronic infections in rats. A worm
burden reduction of 100% was achieved using a single oral
dose of 200–400 mg/Kg. Lesser activity of these drugs was
shown against juvenile worms [95]. Interestingly, single oral
doses of 200 mg/Kg of artemether completely cured infec-
tions with isolates of F. hepatica resistant to triclabendazole
[97]. Artesunate and artemether, given by the intramuscular
route, yielded high egg and worm burden reductions in F.
hepatica-infected sheep [98]. Although there are promising
results obtained from animal models, the data on human
infections is somewhat confused. A study on 100 patients
from Vietnam showed that artesunate may be useful for the
treatment of acute fascioliasis. Treated patients developed a
lower frequency of abdominal pain than those treated with
triclabendazole [99]. In contrast, a recent study that assessed
the efficacy and safety of oral artemether in patients with
chronic fascioliasis showed that cure rates were lower than
those obtained with triclabendazole [100].

Due to the problems that artemisinins have in relation to
their bioavailability, preparation, and pharmacokinetics,
many synthetic peroxide analogs have been prepared and
investigated. One of them, ozonide OZ78, has shown to be
an effective flukicide in the rodent model. Complete F.
hepatica worm burden reduction was achieved in acute
and chronic infections in rats [101]. Moreover, OZ78 also
cured rats infected with isolates of F. hepatica resistant to
triclabendazole [97]. However, a recent study showed that
single 50 mg/Kg oral and subcutaneous doses of OZ78
lacked activity against F. hepatica infection in sheep [102].

Several studies have shown that the Chinese anthelminthic
drug tribendimidine might be a useful flukicide. This drug has

been shown to be effective in the treatment of C. sinensis and
O. viverrini in rats and hamsters. In contrast, it does not show
activity against F. hepatica in rats [94, 103]. Soliman and Taha
[104] have studied recently the efficacy in vitro of the rhoda-
nine derivative (Ro-354) against adults of F. gigantica. One
hour post-incubation, significant tegumental damage was
observed.

The increasing interest on medicinal plants as new sources
of antiparasitic drugs has led to the study of several extracts as
flukicides. For example, it has been shown that several flavo-
noids have a direct effect on trematodes [105]. Recently,
Ferreira et al. [106] showed that ethanolic extracts of Artemi-
sia annua, A. absinthium, and Asimina triloba kill E. caproni
and F. hepatica, probably in relation to their elevated content
in artemisinins and acetogenins.

Concluding remarks

Although food-borne trematodiases have been traditionally
considered as minor diseases confined to low-income
countries, they are currently re-emerging worldwide, includ-
ing in developed regions. Although, in the past, the impor-
tance of these diseases has been often underestimated, in
recent years, the transcendence has been highlighted. Consid-
erable progress has been made toward improved diagnoses
and a better understanding of the epidemiology, pathology,
control, and treatment of the major food-borne diseases. How-
ever, the number of infected persons is counted in the millions
and 10% of the world’s population is considered to live at risk
for infection. Current control strategies based on the use of
chemotherapy to reduce morbidity, interrupting transmission,
and reducing risky human behavior are reasonable and logical.
However, several factors such as deeply embedded cultural
habits or the strong link of these diseases with poverty,
together with the increasing international markets or demo-
graphic changes, make the effective control of food-borne
trematodiases difficult. In this context, further research on
the food-borne trematodiases using new technologies is
needed.

The emergent nature of the food-borne trematodiases
and the new risks of transmission introduced by the
“globalized world” have expanded the distribution of
the food-borne trematodiases, which makes it necessary
for new epidemiological approaches. New maps of risk
using geographical information systems and remote sens-
ing should be undertaken for most of the food-borne
trematodiases. Furthermore, PCR-based approaches may
also be useful for future epidemiological surveys. For
example, a recent study using this methodology has
allowed the identification of a new C. sinensis endemic
community in central Thailand that was overlooked using
traditional methodologies [107].
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Molecular biology tools should help greatly in several
aspects, including diagnosis, the identification of new bio-
markers, and the control and knowledge of host–parasite
interactions. Genomics and proteomics may provide new
opportunities for the development of more rapid and sensitive
diagnostic tools, facilitating field studies and also vaccines.
For example, recent studies have identified several antigenic
proteins of C. sinensis, including tetraspanins, cathepsins, 14-
3-3 proteins, cyclophilins, or carboxylases, that are promising
candidates for diagnosis or vaccines [108–113]. Although
significant progress is being achieved in the studies of
genomics and molecular genetics of flukes such as C. sinensis
[114–116], the understanding of the functions of the genes is
limited by the absence of whole genome sequences. Increase
of the available sequence information from diverse trematodes
is needed and this will facilitate the identification of new
candidates for diagnosis and vaccines. Molecular approaches,
together with basic biochemical and physiological studies,
may also be useful to gain further insight into the host–parasite
interactions in food-borne trematodiases. Functional
genomics may be helpful for a better understanding of pro-
cesses such as the mechanisms of parasite invasion, patho-
genesis, secreted proteins of these parasites with the host, and,
indeed, the molecular basis of the carcinogenesis induced by
some of these parasites. In this context, the recent massive flux
of research in sequencing techniques and application of func-
tional genomics studies can be essential for the control of the
food-borne trematodiases. These advances should facilitate a
reasonably accurate estimate of the global burden due to food-
borne trematodiases and the implementation of adequate
control measures.
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